mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-15 02:05:37 +00:00
155c164b0c
So valence sector looks ok. FermionOperatorImpl.h provides the policy classes. Expect HMC will introduce a smearing policy and a fermion representation change policy template param. Will also probably need multi-precision work. * HMC is running even-odd and non-checkerboarded (checked 4^4 wilson fermion/wilson gauge). There appears to be a bug in the multi-level integrator -- <e-dH> passes with single level but not with multi-level. In any case there looks to be quite a bit to clean up. This is the "const det" style implementation that is not appropriate yet for clover since it assumes that Mee is indept of the gauge fields. Easily fixed in future.
409 lines
13 KiB
C++
409 lines
13 KiB
C++
#include <Grid.h>
|
|
namespace Grid {
|
|
namespace QCD {
|
|
|
|
|
|
template<class Impl>
|
|
void PartialFractionFermion5D<Impl>::Mdir (const FermionField &psi, FermionField &chi,int dir,int disp){
|
|
// this does both dag and undag but is trivial; make a common helper routing
|
|
|
|
int sign = 1;
|
|
int Ls = this->Ls;
|
|
|
|
this->DhopDir(psi,chi,dir,disp);
|
|
|
|
int nblock=(Ls-1)/2;
|
|
for(int b=0;b<nblock;b++){
|
|
int s = 2*b;
|
|
ag5xpby_ssp(chi,-scale,chi,0.0,chi,s,s);
|
|
ag5xpby_ssp(chi, scale,chi,0.0,chi,s+1,s+1);
|
|
}
|
|
ag5xpby_ssp(chi,p[nblock]*scale/amax,chi,0.0,chi,Ls-1,Ls-1);
|
|
|
|
}
|
|
template<class Impl>
|
|
void PartialFractionFermion5D<Impl>::Meooe_internal(const FermionField &psi, FermionField &chi,int dag)
|
|
{
|
|
int Ls = this->Ls;
|
|
int sign = dag ? (-1) : 1;
|
|
|
|
if ( psi.checkerboard == Odd ) {
|
|
this->DhopEO(psi,chi,DaggerNo);
|
|
} else {
|
|
this->DhopOE(psi,chi,DaggerNo);
|
|
}
|
|
|
|
int nblock=(Ls-1)/2;
|
|
for(int b=0;b<nblock;b++){
|
|
int s = 2*b;
|
|
ag5xpby_ssp(chi,-scale,chi,0.0,chi,s,s);
|
|
ag5xpby_ssp(chi, scale,chi,0.0,chi,s+1,s+1);
|
|
}
|
|
ag5xpby_ssp(chi,p[nblock]*scale/amax,chi,0.0,chi,Ls-1,Ls-1);
|
|
}
|
|
|
|
template<class Impl>
|
|
void PartialFractionFermion5D<Impl>::Mooee_internal(const FermionField &psi, FermionField &chi,int dag)
|
|
{
|
|
// again dag and undag are trivially related
|
|
int sign = dag ? (-1) : 1;
|
|
int Ls = this->Ls;
|
|
|
|
int nblock=(Ls-1)/2;
|
|
for(int b=0;b<nblock;b++){
|
|
|
|
int s = 2*b;
|
|
RealD pp = p[nblock-1-b];
|
|
RealD qq = q[nblock-1-b];
|
|
|
|
// Do each 2x2 block aligned at s and multiplies Dw site diagonal by G5 so Hw
|
|
ag5xpby_ssp(chi,-dw_diag*scale,psi,amax*sqrt(qq)*scale,psi, s ,s+1);
|
|
ag5xpby_ssp(chi, dw_diag*scale,psi,amax*sqrt(qq)*scale,psi, s+1,s);
|
|
axpby_ssp (chi, 1.0, chi,sqrt(amax*pp)*scale*sign,psi,s+1,Ls-1);
|
|
}
|
|
|
|
{
|
|
RealD R=(1+mass)/(1-mass);
|
|
//R g5 psi[Ls-1] + p[0] H
|
|
ag5xpbg5y_ssp(chi,R*scale,psi,p[nblock]*scale*dw_diag/amax,psi,Ls-1,Ls-1);
|
|
|
|
for(int b=0;b<nblock;b++){
|
|
int s = 2*b+1;
|
|
RealD pp = p[nblock-1-b];
|
|
axpby_ssp(chi,1.0,chi,-sqrt(amax*pp)*scale*sign,psi,Ls-1,s);
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class Impl>
|
|
void PartialFractionFermion5D<Impl>::MooeeInv_internal(const FermionField &psi, FermionField &chi,int dag)
|
|
{
|
|
int sign = dag ? (-1) : 1;
|
|
int Ls = this->Ls;
|
|
|
|
FermionField tmp(psi._grid);
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////
|
|
//Linv
|
|
///////////////////////////////////////////////////////////////////////////////////////
|
|
int nblock=(Ls-1)/2;
|
|
|
|
axpy(chi,0.0,psi,psi); // Identity piece
|
|
|
|
for(int b=0;b<nblock;b++){
|
|
int s = 2*b;
|
|
RealD pp = p[nblock-1-b];
|
|
RealD qq = q[nblock-1-b];
|
|
RealD coeff1=sign*sqrt(amax*amax*amax*pp*qq) / ( dw_diag*dw_diag + amax*amax* qq);
|
|
RealD coeff2=sign*sqrt(amax*pp)*dw_diag / ( dw_diag*dw_diag + amax*amax* qq); // Implicit g5 here
|
|
axpby_ssp (chi,1.0,chi,coeff1,psi,Ls-1,s);
|
|
axpbg5y_ssp(chi,1.0,chi,coeff2,psi,Ls-1,s+1);
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////
|
|
//Dinv (note D isn't really diagonal -- just diagonal enough that we can still invert)
|
|
// Compute Seeinv (coeff of gamma5)
|
|
///////////////////////////////////////////////////////////////////////////////////////
|
|
RealD R=(1+mass)/(1-mass);
|
|
RealD Seeinv = R + p[nblock]*dw_diag/amax;
|
|
for(int b=0;b<nblock;b++){
|
|
Seeinv += p[nblock-1-b]*dw_diag/amax / ( dw_diag*dw_diag/amax/amax + q[nblock-1-b]);
|
|
}
|
|
Seeinv = 1.0/Seeinv;
|
|
|
|
for(int b=0;b<nblock;b++){
|
|
int s = 2*b;
|
|
RealD pp = p[nblock-1-b];
|
|
RealD qq = q[nblock-1-b];
|
|
RealD coeff1=dw_diag / ( dw_diag*dw_diag + amax*amax* qq); // Implicit g5 here
|
|
RealD coeff2=amax*sqrt(qq) / ( dw_diag*dw_diag + amax*amax* qq);
|
|
ag5xpby_ssp (tmp,-coeff1,chi,coeff2,chi,s,s+1);
|
|
ag5xpby_ssp (tmp, coeff1,chi,coeff2,chi,s+1,s);
|
|
}
|
|
ag5xpby_ssp (tmp, Seeinv,chi,0.0,chi,Ls-1,Ls-1);
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////
|
|
// Uinv
|
|
///////////////////////////////////////////////////////////////////////////////////////
|
|
for(int b=0;b<nblock;b++){
|
|
int s = 2*b;
|
|
RealD pp = p[nblock-1-b];
|
|
RealD qq = q[nblock-1-b];
|
|
RealD coeff1=-sign*sqrt(amax*amax*amax*pp*qq) / ( dw_diag*dw_diag + amax*amax* qq);
|
|
RealD coeff2=-sign*sqrt(amax*pp)*dw_diag / ( dw_diag*dw_diag + amax*amax* qq); // Implicit g5 here
|
|
axpby_ssp (chi,1.0/scale,tmp,coeff1/scale,tmp,s,Ls-1);
|
|
axpbg5y_ssp(chi,1.0/scale,tmp,coeff2/scale,tmp,s+1,Ls-1);
|
|
}
|
|
axpby_ssp (chi, 1.0/scale,tmp,0.0,tmp,Ls-1,Ls-1);
|
|
}
|
|
|
|
template<class Impl>
|
|
void PartialFractionFermion5D<Impl>::M_internal(const FermionField &psi, FermionField &chi,int dag)
|
|
{
|
|
FermionField D(psi._grid);
|
|
|
|
int Ls = this->Ls;
|
|
int sign = dag ? (-1) : 1;
|
|
|
|
// For partial frac Hw case (b5=c5=1) chroma quirkily computes
|
|
//
|
|
// Conventions for partfrac appear to be a mess.
|
|
// Tony's Nara lectures have
|
|
//
|
|
// BlockDiag( H/p_i 1 | 1 )
|
|
// ( 1 p_i H / q_i^2 | 0 )
|
|
// ---------------------------------
|
|
// ( -1 0 | R +p0 H )
|
|
//
|
|
//Chroma ( -2H 2sqrt(q_i) | 0 )
|
|
// (2 sqrt(q_i) 2H | 2 sqrt(p_i) )
|
|
// ---------------------------------
|
|
// ( 0 -2 sqrt(p_i) | 2 R gamma_5 + p0 2H
|
|
//
|
|
// Edwards/Joo/Kennedy/Wenger
|
|
//
|
|
// Here, the "beta's" selected by chroma to scale the unphysical bulk constraint fields
|
|
// incorporate the approx scale factor. This is obtained by propagating the
|
|
// scale on "H" out to the off diagonal elements as follows:
|
|
//
|
|
// BlockDiag( H/p_i 1 | 1 )
|
|
// ( 1 p_i H / q_i^2 | 0 )
|
|
// ---------------------------------
|
|
// ( -1 0 | R + p_0 H )
|
|
//
|
|
// becomes:
|
|
// BlockDiag( H/ sp_i 1 | 1 )
|
|
// ( 1 sp_i H / s^2q_i^2 | 0 )
|
|
// ---------------------------------
|
|
// ( -1 0 | R + p_0/s H )
|
|
//
|
|
//
|
|
// This is implemented in Chroma by
|
|
// p0' = p0/approxMax
|
|
// p_i' = p_i*approxMax
|
|
// q_i' = q_i*approxMax*approxMax
|
|
//
|
|
// After the equivalence transform is applied the matrix becomes
|
|
//
|
|
//Chroma ( -2H sqrt(q'_i) | 0 )
|
|
// (sqrt(q'_i) 2H | sqrt(p'_i) )
|
|
// ---------------------------------
|
|
// ( 0 -sqrt(p'_i) | 2 R gamma_5 + p'0 2H
|
|
//
|
|
// = ( -2H sqrt(q_i)amax | 0 )
|
|
// (sqrt(q_i)amax 2H | sqrt(p_i*amax) )
|
|
// ---------------------------------
|
|
// ( 0 -sqrt(p_i)*amax | 2 R gamma_5 + p0/amax 2H
|
|
//
|
|
|
|
this->DW(psi,D,DaggerNo);
|
|
|
|
int nblock=(Ls-1)/2;
|
|
for(int b=0;b<nblock;b++){
|
|
|
|
int s = 2*b;
|
|
double pp = p[nblock-1-b];
|
|
double qq = q[nblock-1-b];
|
|
|
|
// Do each 2x2 block aligned at s and
|
|
ag5xpby_ssp(chi,-1.0*scale,D,amax*sqrt(qq)*scale,psi, s ,s+1); // Multiplies Dw by G5 so Hw
|
|
ag5xpby_ssp(chi, 1.0*scale,D,amax*sqrt(qq)*scale,psi, s+1,s);
|
|
|
|
// Pick up last column
|
|
axpby_ssp (chi, 1.0, chi,sqrt(amax*pp)*scale*sign,psi,s+1,Ls-1);
|
|
}
|
|
|
|
{
|
|
double R=(1+this->mass)/(1-this->mass);
|
|
//R g5 psi[Ls] + p[0] H
|
|
ag5xpbg5y_ssp(chi,R*scale,psi,p[nblock]*scale/amax,D,Ls-1,Ls-1);
|
|
|
|
for(int b=0;b<nblock;b++){
|
|
int s = 2*b+1;
|
|
double pp = p[nblock-1-b];
|
|
axpby_ssp(chi,1.0,chi,-sqrt(amax*pp)*scale*sign,psi,Ls-1,s);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
template<class Impl>
|
|
RealD PartialFractionFermion5D<Impl>::M (const FermionField &in, FermionField &out)
|
|
{
|
|
M_internal(in,out,DaggerNo);
|
|
return norm2(out);
|
|
}
|
|
template<class Impl>
|
|
RealD PartialFractionFermion5D<Impl>::Mdag (const FermionField &in, FermionField &out)
|
|
{
|
|
M_internal(in,out,DaggerYes);
|
|
return norm2(out);
|
|
}
|
|
|
|
template<class Impl>
|
|
void PartialFractionFermion5D<Impl>::Meooe (const FermionField &in, FermionField &out)
|
|
{
|
|
Meooe_internal(in,out,DaggerNo);
|
|
}
|
|
template<class Impl>
|
|
void PartialFractionFermion5D<Impl>::MeooeDag (const FermionField &in, FermionField &out)
|
|
{
|
|
Meooe_internal(in,out,DaggerYes);
|
|
}
|
|
template<class Impl>
|
|
void PartialFractionFermion5D<Impl>::Mooee (const FermionField &in, FermionField &out)
|
|
{
|
|
Mooee_internal(in,out,DaggerNo);
|
|
}
|
|
template<class Impl>
|
|
void PartialFractionFermion5D<Impl>::MooeeDag (const FermionField &in, FermionField &out)
|
|
{
|
|
Mooee_internal(in,out,DaggerYes);
|
|
}
|
|
|
|
template<class Impl>
|
|
void PartialFractionFermion5D<Impl>::MooeeInv (const FermionField &in, FermionField &out)
|
|
{
|
|
MooeeInv_internal(in,out,DaggerNo);
|
|
}
|
|
template<class Impl>
|
|
void PartialFractionFermion5D<Impl>::MooeeInvDag (const FermionField &in, FermionField &out)
|
|
{
|
|
MooeeInv_internal(in,out,DaggerYes);
|
|
}
|
|
|
|
|
|
// force terms; five routines; default to Dhop on diagonal
|
|
template<class Impl>
|
|
void PartialFractionFermion5D<Impl>::MDeriv (GaugeField &mat,const FermionField &U,const FermionField &V,int dag)
|
|
{
|
|
int Ls = this->Ls;
|
|
|
|
FermionField D(V._grid);
|
|
|
|
int nblock=(Ls-1)/2;
|
|
for(int b=0;b<nblock;b++){
|
|
int s = 2*b;
|
|
ag5xpby_ssp(D,-scale,U,0.0,U,s,s);
|
|
ag5xpby_ssp(D, scale,U,0.0,U,s+1,s+1);
|
|
}
|
|
ag5xpby_ssp(D,p[nblock]*scale/amax,U,0.0,U,Ls-1,Ls-1);
|
|
|
|
this->DhopDeriv(mat,D,V,DaggerNo);
|
|
};
|
|
template<class Impl>
|
|
void PartialFractionFermion5D<Impl>::MoeDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)
|
|
{
|
|
int Ls = this->Ls;
|
|
|
|
FermionField D(V._grid);
|
|
|
|
int nblock=(Ls-1)/2;
|
|
for(int b=0;b<nblock;b++){
|
|
int s = 2*b;
|
|
ag5xpby_ssp(D,-scale,U,0.0,U,s,s);
|
|
ag5xpby_ssp(D, scale,U,0.0,U,s+1,s+1);
|
|
}
|
|
ag5xpby_ssp(D,p[nblock]*scale/amax,U,0.0,U,Ls-1,Ls-1);
|
|
|
|
this->DhopDerivOE(mat,D,V,DaggerNo);
|
|
};
|
|
template<class Impl>
|
|
void PartialFractionFermion5D<Impl>::MeoDeriv(GaugeField &mat,const FermionField &U,const FermionField &V,int dag)
|
|
{
|
|
int Ls = this->Ls;
|
|
|
|
FermionField D(V._grid);
|
|
|
|
int nblock=(Ls-1)/2;
|
|
for(int b=0;b<nblock;b++){
|
|
int s = 2*b;
|
|
ag5xpby_ssp(D,-scale,U,0.0,U,s,s);
|
|
ag5xpby_ssp(D, scale,U,0.0,U,s+1,s+1);
|
|
}
|
|
ag5xpby_ssp(D,p[nblock]*scale/amax,U,0.0,U,Ls-1,Ls-1);
|
|
|
|
this->DhopDerivEO(mat,D,V,DaggerNo);
|
|
};
|
|
|
|
template<class Impl>
|
|
void PartialFractionFermion5D<Impl>::SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD scale){
|
|
SetCoefficientsZolotarev(1.0/scale,zdata);
|
|
}
|
|
template<class Impl>
|
|
void PartialFractionFermion5D<Impl>::SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata){
|
|
|
|
// check on degree matching
|
|
// std::cout<<GridLogMessage << Ls << " Ls"<<std::endl;
|
|
// std::cout<<GridLogMessage << zdata->n << " - n"<<std::endl;
|
|
// std::cout<<GridLogMessage << zdata->da << " -da "<<std::endl;
|
|
// std::cout<<GridLogMessage << zdata->db << " -db"<<std::endl;
|
|
// std::cout<<GridLogMessage << zdata->dn << " -dn"<<std::endl;
|
|
// std::cout<<GridLogMessage << zdata->dd << " -dd"<<std::endl;
|
|
int Ls = this->Ls;
|
|
|
|
assert(Ls == (2*zdata->da -1) );
|
|
|
|
// Part frac
|
|
// RealD R;
|
|
R=(1+mass)/(1-mass);
|
|
dw_diag = (4.0-this->M5);
|
|
|
|
// std::vector<RealD> p;
|
|
// std::vector<RealD> q;
|
|
p.resize(zdata->da);
|
|
q.resize(zdata->dd);
|
|
|
|
for(int n=0;n<zdata->da;n++){
|
|
p[n] = zdata -> alpha[n];
|
|
}
|
|
for(int n=0;n<zdata->dd;n++){
|
|
q[n] = -zdata -> ap[n];
|
|
}
|
|
|
|
scale= part_frac_chroma_convention ? 2.0 : 1.0; // Chroma conventions annoy me
|
|
|
|
amax=zolo_hi;
|
|
}
|
|
|
|
// Constructors
|
|
template<class Impl>
|
|
PartialFractionFermion5D<Impl>::PartialFractionFermion5D(GaugeField &_Umu,
|
|
GridCartesian &FiveDimGrid,
|
|
GridRedBlackCartesian &FiveDimRedBlackGrid,
|
|
GridCartesian &FourDimGrid,
|
|
GridRedBlackCartesian &FourDimRedBlackGrid,
|
|
RealD _mass,RealD M5,
|
|
const ImplParams &p) :
|
|
WilsonFermion5D<Impl>(_Umu,
|
|
FiveDimGrid, FiveDimRedBlackGrid,
|
|
FourDimGrid, FourDimRedBlackGrid,M5,p),
|
|
mass(_mass)
|
|
|
|
{
|
|
int Ls = this->Ls;
|
|
|
|
assert((Ls&0x1)==1); // Odd Ls required
|
|
int nrational=Ls-1;
|
|
|
|
|
|
Approx::zolotarev_data *zdata = Approx::higham(1.0,nrational);
|
|
|
|
// NB: chroma uses a cast to "float" for the zolotarev range(!?).
|
|
// this creates a real difference in the operator which I do not like but we can replicate here
|
|
// to demonstrate compatibility
|
|
// RealD eps = (zolo_lo / zolo_hi);
|
|
// zdata = bfm_zolotarev(eps,nrational,0);
|
|
|
|
SetCoefficientsTanh(zdata,1.0);
|
|
|
|
Approx::zolotarev_free(zdata);
|
|
|
|
}
|
|
|
|
FermOpTemplateInstantiate(PartialFractionFermion5D);
|
|
|
|
}
|
|
}
|
|
|