1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 09:15:38 +01:00
Grid/lib/Stencil.h
2016-01-03 01:38:11 +00:00

727 lines
24 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/Stencil.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_STENCIL_H
#define GRID_STENCIL_H
#include <thread>
#include <stencil/Lebesgue.h> // subdir aggregate
//////////////////////////////////////////////////////////////////////////////////////////
// Must not lose sight that goal is to be able to construct really efficient
// gather to a point stencil code. CSHIFT is not the best way, so need
// additional stencil support.
//
// Stencil based code will pre-exchange haloes and use a table lookup for neighbours.
// This will be done with generality to allow easier efficient implementations.
// Overlap of comms and compute could be semi-automated by tabulating off-node connected,
// and
//
// Lattice <foo> could also allocate haloes which get used for stencil code.
//
// Grid could create a neighbour index table for a given stencil.
//
// Could also implement CovariantCshift, to fuse the loops and enhance performance.
//
//
// General stencil computation:
//
// Generic services
// 0) Prebuild neighbour tables
// 1) Compute sizes of all haloes/comms buffers; allocate them.
//
// 2) Gather all faces, and communicate.
// 3) Loop over result sites, giving nbr index/offnode info for each
//
// Could take a
// SpinProjectFaces
// start comms
// complete comms
// Reconstruct Umu
//
// Approach.
//
//////////////////////////////////////////////////////////////////////////////////////////
namespace Grid {
struct StencilEntry {
int _offset;
int _is_local;
int _permute;
int _around_the_world;
};
template<class vobj,class cobj, class compressor>
class CartesianStencil { // Stencil runs along coordinate axes only; NO diagonal fill in.
public:
typedef uint32_t StencilInteger;
typedef typename cobj::vector_type vector_type;
typedef typename cobj::scalar_type scalar_type;
typedef typename cobj::scalar_object scalar_object;
int _checkerboard;
int _npoints; // Move to template param?
GridBase * _grid;
// npoints of these
std::vector<int> _directions;
std::vector<int> _distances;
std::vector<int> _comm_buf_size;
std::vector<int> _permute_type;
// npoints x Osites() of these
std::vector<std::vector<StencilEntry> > _entries;
// Comms buffers
std::vector<std::vector<scalar_object> > send_buf_extract;
std::vector<std::vector<scalar_object> > recv_buf_extract;
std::vector<scalar_object *> pointers;
std::vector<scalar_object *> rpointers;
Vector<cobj> send_buf;
inline StencilEntry * GetEntry(int &ptype,int point,int osite) { ptype = _permute_type[point]; return & _entries[point][osite]; }
int _unified_buffer_size;
int _request_count;
double buftime;
double gathertime;
double commtime;
double commstime;
double halotime;
double scattertime;
double mergetime;
double gathermtime;
double splicetime;
double nosplicetime;
CartesianStencil(GridBase *grid,
int npoints,
int checkerboard,
const std::vector<int> &directions,
const std::vector<int> &distances)
: _entries(npoints), _permute_type(npoints), _comm_buf_size(npoints)
{
gathertime=0;
commtime=0;
commstime=0;
halotime=0;
scattertime=0;
mergetime=0;
gathermtime=0;
buftime=0;
splicetime=0;
nosplicetime=0;
_npoints = npoints;
_grid = grid;
_directions = directions;
_distances = distances;
_unified_buffer_size=0;
_request_count =0;
int osites = _grid->oSites();
for(int i=0;i<npoints;i++){
int point = i;
_entries[i].resize( osites);
int dimension = directions[i];
int displacement = distances[i];
int shift = displacement;
int fd = _grid->_fdimensions[dimension];
int rd = _grid->_rdimensions[dimension];
_permute_type[point]=_grid->PermuteType(dimension);
_checkerboard = checkerboard;
// the permute type
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 ;
int splice_dim = _grid->_simd_layout[dimension]>1 && (comm_dim);
int sshift[2];
// Underlying approach. For each local site build
// up a table containing the npoint "neighbours" and whether they
// live in lattice or a comms buffer.
if ( !comm_dim ) {
sshift[0] = _grid->CheckerBoardShiftForCB(_checkerboard,dimension,shift,Even);
sshift[1] = _grid->CheckerBoardShiftForCB(_checkerboard,dimension,shift,Odd);
if ( sshift[0] == sshift[1] ) {
Local(point,dimension,shift,0x3);
} else {
Local(point,dimension,shift,0x1);// if checkerboard is unfavourable take two passes
Local(point,dimension,shift,0x2);// both with block stride loop iteration
}
} else { // All permute extract done in comms phase prior to Stencil application
// So tables are the same whether comm_dim or splice_dim
sshift[0] = _grid->CheckerBoardShiftForCB(_checkerboard,dimension,shift,Even);
sshift[1] = _grid->CheckerBoardShiftForCB(_checkerboard,dimension,shift,Odd);
if ( sshift[0] == sshift[1] ) {
// std::cout<<"Comms 0x3"<<std::endl;
Comms(point,dimension,shift,0x3);
} else {
// std::cout<<"Comms 0x1 ; 0x2"<<std::endl;
Comms(point,dimension,shift,0x1);// if checkerboard is unfavourable take two passes
Comms(point,dimension,shift,0x2);// both with block stride loop iteration
}
}
// for(int ss=0;ss<osites;ss++){
// std::cout << "point["<<i<<"] "<<ss<<"-> o"<<_entries[i][ss]._offset<<"; l"<<
// _entries[i][ss]._is_local<<"; p"<<_entries[i][ss]._permute<<std::endl;
// }
}
}
void Local (int point, int dimension,int shiftpm,int cbmask)
{
int fd = _grid->_fdimensions[dimension];
int rd = _grid->_rdimensions[dimension];
int ld = _grid->_ldimensions[dimension];
int gd = _grid->_gdimensions[dimension];
// Map to always positive shift modulo global full dimension.
int shift = (shiftpm+fd)%fd;
// the permute type
int permute_dim =_grid->PermuteDim(dimension);
for(int x=0;x<rd;x++){
int o = 0;
int bo = x * _grid->_ostride[dimension];
int cb= (cbmask==0x2)? Odd : Even;
int sshift = _grid->CheckerBoardShiftForCB(_checkerboard,dimension,shift,cb);
int sx = (x+sshift)%rd;
int wraparound=0;
if ( (shiftpm==-1) && (sx>x) ) {
wraparound = 1;
}
if ( (shiftpm== 1) && (sx<x) ) {
wraparound = 1;
}
int permute_slice=0;
if(permute_dim){
int wrap = sshift/rd;
int num = sshift%rd;
if ( x< rd-num ) permute_slice=wrap;
else permute_slice = 1-wrap;
}
CopyPlane(point,dimension,x,sx,cbmask,permute_slice,wraparound);
}
}
void Comms (int point,int dimension,int shiftpm,int cbmask)
{
GridBase *grid=_grid;
const int Nsimd = grid->Nsimd();
int fd = _grid->_fdimensions[dimension];
int ld = _grid->_ldimensions[dimension];
int rd = _grid->_rdimensions[dimension];
int pd = _grid->_processors[dimension];
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 ;
// assert(simd_layout==1); // Why?
assert(comm_dim==1);
int shift = (shiftpm + fd) %fd;
assert(shift>=0);
assert(shift<fd);
int buffer_size = _grid->_slice_nblock[dimension]*_grid->_slice_block[dimension]; // done in reduced dims, so SIMD factored
// std::cout << " dim " <<dimension<<" buffersize "<<buffer_size<<std::endl;
_comm_buf_size[point] = buffer_size; // Size of _one_ plane. Multiple planes may be gathered and
// send to one or more remote nodes.
int cb= (cbmask==0x2)? Odd : Even;
int sshift= _grid->CheckerBoardShiftForCB(_checkerboard,dimension,shift,cb);
for(int x=0;x<rd;x++){
int permute_type=grid->PermuteType(dimension);
int sx = (x+sshift)%rd;
int offnode = 0;
if ( simd_layout > 1 ) {
for(int i=0;i<Nsimd;i++){
int inner_bit = (Nsimd>>(permute_type+1));
int ic= (i&inner_bit)? 1:0;
int my_coor = rd*ic + x;
int nbr_coor = my_coor+sshift;
int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors
if ( nbr_proc ) {
offnode =1;
}
}
} else {
int comm_proc = ((x+sshift)/rd)%pd;
offnode = (comm_proc!= 0);
// std::cout << "Stencil x "<<x<<" shift "<<shift<<" sshift "<<sshift<<" fd "<<fd<<" rd " <<rd<<" offnode "<<offnode<<" sx "<<sx<< " comm_proc "<<comm_proc<<" pd "<< pd <<std::endl;
}
// Stencil x 1 shift 3 sshift 3 fd 8 rd 2 offnode 0 sx 0 comm_proc 0 pd 2
// x+sshift = 4
// x+sshift/2 = 2
// 2%2 == 0
// Problem: sshift is wrong in "rd" for SIMD directions. The complex logic in Cshift_mpi is needed.
int wraparound=0;
if ( (shiftpm==-1) && (sx>x) && (grid->_processor_coor[dimension]==0) ) {
wraparound = 1;
}
if ( (shiftpm== 1) && (sx<x) && (grid->_processor_coor[dimension]==grid->_processors[dimension]-1) ) {
wraparound = 1;
}
if (!offnode) {
int permute_slice=0;
CopyPlane(point,dimension,x,sx,cbmask,permute_slice,wraparound);
} else {
int words = buffer_size;
if (cbmask != 0x3) words=words>>1;
// GatherPlaneSimple (point,dimension,sx,cbmask);
int rank = grid->_processor;
int recv_from_rank;
int xmit_to_rank;
int unified_buffer_offset = _unified_buffer_size;
_unified_buffer_size += words;
// std::cout<< "Comms dim "<<dimension<<" offset "<<unified_buffer_offset<<" size "<<" " << _unified_buffer_size<<std::endl;
ScatterPlane(point,dimension,x,cbmask,unified_buffer_offset,wraparound); // permute/extract/merge is done in comms phase
}
}
}
// Routine builds up integer table for each site in _offsets, _is_local, _permute
void CopyPlane(int point, int dimension,int lplane,int rplane,int cbmask,int permute,int wrap)
{
int rd = _grid->_rdimensions[dimension];
if ( !_grid->CheckerBoarded(dimension) ) {
int o = 0; // relative offset to base within plane
int ro = rplane*_grid->_ostride[dimension]; // base offset for start of plane
int lo = lplane*_grid->_ostride[dimension]; // offset in buffer
// Simple block stride gather of SIMD objects
for(int n=0;n<_grid->_slice_nblock[dimension];n++){
for(int b=0;b<_grid->_slice_block[dimension];b++){
_entries[point][lo+o+b]._offset =ro+o+b;
_entries[point][lo+o+b]._is_local=1;
_entries[point][lo+o+b]._permute=permute;
_entries[point][lo+o+b]._around_the_world=wrap;
}
o +=_grid->_slice_stride[dimension];
}
} else {
int ro = rplane*_grid->_ostride[dimension]; // base offset for start of plane
int lo = lplane*_grid->_ostride[dimension]; // base offset for start of plane
int o = 0; // relative offset to base within plane
for(int n=0;n<_grid->_slice_nblock[dimension];n++){
for(int b=0;b<_grid->_slice_block[dimension];b++){
int ocb=1<<_grid->CheckerBoardFromOindex(o+b);
if ( ocb&cbmask ) {
_entries[point][lo+o+b]._offset =ro+o+b;
_entries[point][lo+o+b]._is_local=1;
_entries[point][lo+o+b]._permute=permute;
_entries[point][lo+o+b]._around_the_world=wrap;
}
}
o +=_grid->_slice_stride[dimension];
}
}
}
// Routine builds up integer table for each site in _offsets, _is_local, _permute
void ScatterPlane (int point,int dimension,int plane,int cbmask,int offset, int wrap)
{
int rd = _grid->_rdimensions[dimension];
if ( !_grid->CheckerBoarded(dimension) ) {
int so = plane*_grid->_ostride[dimension]; // base offset for start of plane
int o = 0; // relative offset to base within plane
int bo = 0; // offset in buffer
// Simple block stride gather of SIMD objects
for(int n=0;n<_grid->_slice_nblock[dimension];n++){
for(int b=0;b<_grid->_slice_block[dimension];b++){
_entries[point][so+o+b]._offset =offset+(bo++);
_entries[point][so+o+b]._is_local=0;
_entries[point][so+o+b]._permute=0;
_entries[point][so+o+b]._around_the_world=wrap;
}
o +=_grid->_slice_stride[dimension];
}
} else {
int so = plane*_grid->_ostride[dimension]; // base offset for start of plane
int o = 0; // relative offset to base within plane
int bo = 0; // offset in buffer
for(int n=0;n<_grid->_slice_nblock[dimension];n++){
for(int b=0;b<_grid->_slice_block[dimension];b++){
int ocb=1<<_grid->CheckerBoardFromOindex(o+b);// Could easily be a table lookup
if ( ocb & cbmask ) {
_entries[point][so+o+b]._offset =offset+(bo++);
_entries[point][so+o+b]._is_local=0;
_entries[point][so+o+b]._permute =0;
_entries[point][so+o+b]._around_the_world=wrap;
}
}
o +=_grid->_slice_stride[dimension];
}
}
}
// CartesianStencil(GridBase *grid,
// int npoints,
// int checkerboard,
// const std::vector<int> &directions,
// const std::vector<int> &distances);
// Add to tables for various cases; is this mistaken. only local if 1 proc in dim
// Can this be avoided with simpler coding of comms?
// void Local (int point, int dimension,int shift,int cbmask);
// void Comms (int point, int dimension,int shift,int cbmask);
// void CopyPlane(int point, int dimension,int lplane,int rplane,int cbmask,int permute,int wrap);
// void ScatterPlane (int point,int dimension,int plane,int cbmask,int offset,int wrap);
// Could allow a functional munging of the halo to another type during the comms.
// this could implement the 16bit/32bit/64bit compression.
void HaloExchange(const Lattice<vobj> &source,std::vector<cobj,alignedAllocator<cobj> > &u_comm_buf,compressor &compress)
{
std::thread thr = HaloExchangeBegin(source,u_comm_buf,compress);
thr.join();
}
std::thread HaloExchangeBegin(const Lattice<vobj> &source,std::vector<cobj,alignedAllocator<cobj> > & u_comm_buf,compressor &compress) {
return std::thread([&] { this->HaloExchangeBlocking(source,u_comm_buf,compress); });
// std::thread t(&HaloExchangeBlocking,this,source,u_comm_buf,compress);
// return t;
}
void HaloExchangeBlocking(const Lattice<vobj> &source,std::vector<cobj,alignedAllocator<cobj> > &u_comm_buf,compressor &compress)
{
// conformable(source._grid,_grid);
assert(source._grid==_grid);
halotime-=usecond();
if (u_comm_buf.size() != _unified_buffer_size ) u_comm_buf.resize(_unified_buffer_size);
int u_comm_offset=0;
// Gather all comms buffers
for(int point = 0 ; point < _npoints; point++) {
compress.Point(point);
int dimension = _directions[point];
int displacement = _distances[point];
int fd = _grid->_fdimensions[dimension];
int rd = _grid->_rdimensions[dimension];
// Map to always positive shift modulo global full dimension.
int shift = (displacement+fd)%fd;
// int checkerboard = _grid->CheckerBoardDestination(source.checkerboard,shift);
assert (source.checkerboard== _checkerboard);
// the permute type
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 ;
int splice_dim = _grid->_simd_layout[dimension]>1 && (comm_dim);
// Gather phase
int sshift [2];
if ( comm_dim ) {
sshift[0] = _grid->CheckerBoardShiftForCB(_checkerboard,dimension,shift,Even);
sshift[1] = _grid->CheckerBoardShiftForCB(_checkerboard,dimension,shift,Odd);
if ( sshift[0] == sshift[1] ) {
if (splice_dim) {
splicetime-=usecond();
GatherStartCommsSimd(source,dimension,shift,0x3,u_comm_buf,u_comm_offset,compress);
splicetime+=usecond();
} else {
nosplicetime-=usecond();
GatherStartComms(source,dimension,shift,0x3,u_comm_buf,u_comm_offset,compress);
nosplicetime+=usecond();
}
} else {
// std::cout << "dim "<<dimension<<"cb "<<_checkerboard<<"shift "<<shift<<" sshift " << sshift[0]<<" "<<sshift[1]<<std::endl;
if(splice_dim){
splicetime-=usecond();
GatherStartCommsSimd(source,dimension,shift,0x1,u_comm_buf,u_comm_offset,compress);// if checkerboard is unfavourable take two passes
GatherStartCommsSimd(source,dimension,shift,0x2,u_comm_buf,u_comm_offset,compress);// both with block stride loop iteration
splicetime+=usecond();
} else {
nosplicetime-=usecond();
GatherStartComms(source,dimension,shift,0x1,u_comm_buf,u_comm_offset,compress);
GatherStartComms(source,dimension,shift,0x2,u_comm_buf,u_comm_offset,compress);
nosplicetime+=usecond();
}
}
}
}
halotime+=usecond();
}
void GatherStartComms(const Lattice<vobj> &rhs,int dimension,int shift,int cbmask,
std::vector<cobj,alignedAllocator<cobj> > &u_comm_buf,
int &u_comm_offset,compressor & compress)
{
typedef typename cobj::vector_type vector_type;
typedef typename cobj::scalar_type scalar_type;
GridBase *grid=_grid;
assert(rhs._grid==_grid);
// conformable(_grid,rhs._grid);
int fd = _grid->_fdimensions[dimension];
int rd = _grid->_rdimensions[dimension];
int pd = _grid->_processors[dimension];
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 ;
assert(simd_layout==1);
assert(comm_dim==1);
assert(shift>=0);
assert(shift<fd);
int buffer_size = _grid->_slice_nblock[dimension]*_grid->_slice_block[dimension];
if(send_buf.size()<buffer_size) send_buf.resize(buffer_size);
int cb= (cbmask==0x2)? Odd : Even;
int sshift= _grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,cb);
for(int x=0;x<rd;x++){
int sx = (x+sshift)%rd;
int comm_proc = ((x+sshift)/rd)%pd;
if (comm_proc) {
int words = buffer_size;
if (cbmask != 0x3) words=words>>1;
int bytes = words * sizeof(cobj);
gathertime-=usecond();
Gather_plane_simple (rhs,send_buf,dimension,sx,cbmask,compress);
gathertime+=usecond();
int rank = _grid->_processor;
int recv_from_rank;
int xmit_to_rank;
_grid->ShiftedRanks(dimension,comm_proc,xmit_to_rank,recv_from_rank);
assert (xmit_to_rank != _grid->ThisRank());
assert (recv_from_rank != _grid->ThisRank());
// FIXME Implement asynchronous send & also avoid buffer copy
commtime-=usecond();
_grid->SendToRecvFrom((void *)&send_buf[0],
xmit_to_rank,
(void *)&u_comm_buf[u_comm_offset],
recv_from_rank,
bytes);
commtime+=usecond();
u_comm_offset+=words;
}
}
}
void GatherStartCommsSimd(const Lattice<vobj> &rhs,int dimension,int shift,int cbmask,
std::vector<cobj,alignedAllocator<cobj> > &u_comm_buf,
int &u_comm_offset,compressor &compress)
{
buftime-=usecond();
const int Nsimd = _grid->Nsimd();
int fd = _grid->_fdimensions[dimension];
int rd = _grid->_rdimensions[dimension];
int ld = _grid->_ldimensions[dimension];
int pd = _grid->_processors[dimension];
int simd_layout = _grid->_simd_layout[dimension];
int comm_dim = _grid->_processors[dimension] >1 ;
assert(comm_dim==1);
assert(simd_layout==2);
assert(shift>=0);
assert(shift<fd);
int permute_type=_grid->PermuteType(dimension);
///////////////////////////////////////////////
// Simd direction uses an extract/merge pair
///////////////////////////////////////////////
int buffer_size = _grid->_slice_nblock[dimension]*_grid->_slice_block[dimension];
int words = sizeof(cobj)/sizeof(vector_type);
assert(cbmask==0x3); // Fixme think there is a latent bug if not true
// Should grow to max size and then cost very little thereafter
send_buf_extract.resize(Nsimd);
recv_buf_extract.resize(Nsimd);
for(int l=0;l<Nsimd;l++){
if( send_buf_extract[l].size() < buffer_size) {
send_buf_extract[l].resize(buffer_size);
recv_buf_extract[l].resize(buffer_size);
}
}
pointers.resize(Nsimd);
rpointers.resize(Nsimd);
int bytes = buffer_size*sizeof(scalar_object);
buftime+=usecond();
///////////////////////////////////////////
// Work out what to send where
///////////////////////////////////////////
int cb = (cbmask==0x2)? Odd : Even;
int sshift= _grid->CheckerBoardShiftForCB(rhs.checkerboard,dimension,shift,cb);
// loop over outer coord planes orthog to dim
for(int x=0;x<rd;x++){
int any_offnode = ( ((x+sshift)%fd) >= rd );
if ( any_offnode ) {
for(int i=0;i<Nsimd;i++){
pointers[i] = &send_buf_extract[i][0];
}
int sx = (x+sshift)%rd;
gathermtime-=usecond();
Gather_plane_extract<cobj>(rhs,pointers,dimension,sx,cbmask,compress);
gathermtime+=usecond();
for(int i=0;i<Nsimd;i++){
int inner_bit = (Nsimd>>(permute_type+1));
int ic= (i&inner_bit)? 1:0;
int my_coor = rd*ic + x;
int nbr_coor = my_coor+sshift;
int nbr_proc = ((nbr_coor)/ld) % pd;// relative shift in processors
int nbr_lcoor= (nbr_coor%ld);
int nbr_ic = (nbr_lcoor)/rd; // inner coord of peer
int nbr_ox = (nbr_lcoor%rd); // outer coord of peer
int nbr_lane = (i&(~inner_bit));
int recv_from_rank;
int xmit_to_rank;
if (nbr_ic) nbr_lane|=inner_bit;
assert (sx == nbr_ox);
if(nbr_proc){
_grid->ShiftedRanks(dimension,nbr_proc,xmit_to_rank,recv_from_rank);
commstime-=usecond();
_grid->SendToRecvFrom((void *)&send_buf_extract[nbr_lane][0],
xmit_to_rank,
(void *)&recv_buf_extract[i][0],
recv_from_rank,
bytes);
commstime+=usecond();
rpointers[i] = &recv_buf_extract[i][0];
} else {
rpointers[i] = &send_buf_extract[nbr_lane][0];
}
}
// std::cout << " CommsSimd ["<<dimension<<"] offset "<<u_comm_offset<<" buffsize "<<buffer_size <<" unified buffer size "<<_unified_buffer_size<<std::endl;
mergetime-=usecond();
PARALLEL_FOR_LOOP
for(int i=0;i<buffer_size;i++){
// std::cout<<"buffer loop " << i<<" "<<u_comm_offset+i<<" / "<<_unified_buffer_size<<std::endl;
// assert(u_comm_offset+i<_unified_buffer_size);
merge(u_comm_buf[u_comm_offset+i],rpointers,i);
}
mergetime+=usecond();
u_comm_offset+=buffer_size;
}
}
}
};
}
#endif