1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-21 17:22:03 +01:00
Files
Grid/Grid/algorithms/iterative/AdefGeneric.h
Peter Boyle df3e4d1e9c Return fix
2023-10-06 21:00:21 -04:00

365 lines
10 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/iterative/AdefGeneric.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_ALGORITHMS_ITERATIVE_GENERIC_PCG
#define GRID_ALGORITHMS_ITERATIVE_GENERIC_PCG
/*
* Compared to Tang-2009: P=Pleft. P^T = PRight Q=MssInv.
* Script A = SolverMatrix
* Script P = Preconditioner
*
* Implement ADEF-2
*
* Vstart = P^Tx + Qb
* M1 = P^TM + Q
* M2=M3=1
*/
NAMESPACE_BEGIN(Grid);
template<class Field>
class TwoLevelCG : public LinearFunction<Field>
{
public:
RealD Tolerance;
Integer MaxIterations;
GridBase *grid;
// Fine operator, Smoother, CoarseSolver
LinearOperatorBase<Field> &_FineLinop;
LinearFunction<Field> &_Smoother;
// more most opertor functions
TwoLevelCG(RealD tol,
Integer maxit,
LinearOperatorBase<Field> &FineLinop,
LinearFunction<Field> &Smoother,
GridBase *fine) :
Tolerance(tol),
MaxIterations(maxit),
_FineLinop(FineLinop),
_Smoother(Smoother)
{
grid = fine;
};
virtual void operator() (const Field &src, Field &x)
{
Field resid(grid);
RealD f;
RealD rtzp,rtz,a,d,b;
RealD rptzp;
Field p(grid);
Field z(grid);
Field tmp(grid);
Field mmp(grid);
Field r (grid);
Field mu (grid);
Field rp (grid);
//Initial residual computation & set up
double tn;
GridStopWatch HDCGTimer;
HDCGTimer.Start();
//////////////////////////
// x0 = Vstart -- possibly modify guess
//////////////////////////
x=Zero();
Vstart(x,src);
// r0 = b -A x0
_FineLinop.HermOp(x,mmp);
axpy(r, -1.0, mmp, src); // Recomputes r=src-x0
rp=r;
//////////////////////////////////
// Compute z = M1 x
//////////////////////////////////
PcgM1(r,z);
rtzp =real(innerProduct(r,z));
///////////////////////////////////////
// Except Def2, M2 is trivial
///////////////////////////////////////
p=z;
RealD ssq = norm2(src);
RealD rsq = ssq*Tolerance*Tolerance;
std::cout<<GridLogMessage<<"HDCG: k=0 residual "<<rtzp<<" target rsq "<<rsq<<" ssq "<<ssq<<std::endl;
for (int k=1;k<=MaxIterations;k++){
rtz=rtzp;
d= PcgM3(p,mmp);
a = rtz/d;
axpy(x,a,p,x);
RealD rn = axpy_norm(r,-a,mmp,r);
PcgM1(r,z);
rtzp =real(innerProduct(r,z));
int ipcg=1; // almost free inexact preconditioned CG
if (ipcg) {
rptzp =real(innerProduct(rp,z));
} else {
rptzp =0;
}
b = (rtzp-rptzp)/rtz;
PcgM2(z,mu); // ADEF-2 this is identity. Axpy possible to eliminate
axpy(p,b,p,mu); // mu = A r
RealD rrn=sqrt(rn/ssq);
RealD rtn=sqrt(rtz/ssq);
std::cout<<GridLogMessage<<"HDCG: Pcg k= "<<k<<" residual = "<<rrn<<std::endl;
if ( ipcg ) {
axpy(rp,0.0,r,r);
}
// Stopping condition
if ( rn <= rsq ) {
HDCGTimer.Stop();
std::cout<<GridLogMessage<<"HDCG: Pcg converged in "<<k<<" iterations and "<<HDCGTimer.Elapsed()<<std::endl;;
_FineLinop.HermOp(x,mmp);
axpy(tmp,-1.0,src,mmp);
RealD mmpnorm = sqrt(norm2(mmp));
RealD xnorm = sqrt(norm2(x));
RealD srcnorm = sqrt(norm2(src));
RealD tmpnorm = sqrt(norm2(tmp));
RealD true_residual = tmpnorm/srcnorm;
std::cout<<GridLogMessage
<<"HDCG: true residual is "<<true_residual
<<" solution "<<xnorm
<<" source "<<srcnorm
<<" mmp "<<mmpnorm
<<std::endl;
return;
}
}
std::cout<<GridLogMessage<<"HDCG: not converged"<<std::endl;
RealD xnorm = sqrt(norm2(x));
RealD srcnorm = sqrt(norm2(src));
std::cout<<GridLogMessage<<"HDCG: non-converged solution "<<xnorm<<" source "<<srcnorm<<std::endl;
return ;
}
public:
virtual void PcgM1(Field & in, Field & out) =0;
virtual void Vstart(Field & x,const Field & src)=0;
virtual void PcgM2(const Field & in, Field & out) {
out=in;
}
virtual RealD PcgM3(const Field & p, Field & mmp){
RealD dd;
_FineLinop.HermOp(p,mmp);
ComplexD dot = innerProduct(p,mmp);
dd=real(dot);
return dd;
}
/////////////////////////////////////////////////////////////////////
// Only Def1 has non-trivial Vout.
/////////////////////////////////////////////////////////////////////
};
template<class Field, class CoarseField, class Aggregation>
class TwoLevelADEF2 : public TwoLevelCG<Field>
{
public:
///////////////////////////////////////////////////////////////////////////////////
// Need something that knows how to get from Coarse to fine and back again
// void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
// void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
///////////////////////////////////////////////////////////////////////////////////
GridBase *coarsegrid;
Aggregation &_Aggregates;
LinearFunction<CoarseField> &_CoarseSolver;
LinearFunction<CoarseField> &_CoarseSolverPrecise;
///////////////////////////////////////////////////////////////////////////////////
// more most opertor functions
TwoLevelADEF2(RealD tol,
Integer maxit,
LinearOperatorBase<Field> &FineLinop,
LinearFunction<Field> &Smoother,
LinearFunction<CoarseField> &CoarseSolver,
LinearFunction<CoarseField> &CoarseSolverPrecise,
Aggregation &Aggregates
) :
TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,Aggregates.FineGrid),
_CoarseSolver(CoarseSolver),
_CoarseSolverPrecise(CoarseSolverPrecise),
_Aggregates(Aggregates)
{
coarsegrid = Aggregates.CoarseGrid;
};
virtual void PcgM1(Field & in, Field & out)
{
// [PTM+Q] in = [1 - Q A] M in + Q in = Min + Q [ in -A Min]
Field tmp(this->grid);
Field Min(this->grid);
CoarseField PleftProj(this->coarsegrid);
CoarseField PleftMss_proj(this->coarsegrid);
GridStopWatch SmootherTimer;
GridStopWatch MatrixTimer;
SmootherTimer.Start();
this->_Smoother(in,Min);
SmootherTimer.Stop();
MatrixTimer.Start();
this->_FineLinop.HermOp(Min,out);
MatrixTimer.Stop();
axpy(tmp,-1.0,out,in); // tmp = in - A Min
GridStopWatch ProjTimer;
GridStopWatch CoarseTimer;
GridStopWatch PromTimer;
ProjTimer.Start();
this->_Aggregates.ProjectToSubspace(PleftProj,tmp);
ProjTimer.Stop();
CoarseTimer.Start();
this->_CoarseSolver(PleftProj,PleftMss_proj); // Ass^{-1} [in - A Min]_s
CoarseTimer.Stop();
PromTimer.Start();
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,tmp);// tmp = Q[in - A Min]
PromTimer.Stop();
std::cout << GridLogPerformance << "PcgM1 breakdown "<<std::endl;
std::cout << GridLogPerformance << "\tSmoother " << SmootherTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tProj " << ProjTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tCoarse " << CoarseTimer.Elapsed() <<std::endl;
std::cout << GridLogPerformance << "\tProm " << PromTimer.Elapsed() <<std::endl;
axpy(out,1.0,Min,tmp); // Min+tmp
}
virtual void Vstart(Field & x,const Field & src)
{
///////////////////////////////////
// Choose x_0 such that
// x_0 = guess + (A_ss^inv) r_s = guess + Ass_inv [src -Aguess]
// = [1 - Ass_inv A] Guess + Assinv src
// = P^T guess + Assinv src
// = Vstart [Tang notation]
// This gives:
// W^T (src - A x_0) = src_s - A guess_s - r_s
// = src_s - (A guess)_s - src_s + (A guess)_s
// = 0
///////////////////////////////////
Field r(this->grid);
Field mmp(this->grid);
CoarseField PleftProj(this->coarsegrid);
CoarseField PleftMss_proj(this->coarsegrid);
this->_Aggregates.ProjectToSubspace(PleftProj,src);
this->_CoarseSolverPrecise(PleftProj,PleftMss_proj); // Ass^{-1} r_s
this->_Aggregates.PromoteFromSubspace(PleftMss_proj,x);
}
};
template<class Field>
class TwoLevelADEF1defl : public TwoLevelCG<Field>
{
public:
const std::vector<Field> &evec;
const std::vector<RealD> &eval;
TwoLevelADEF1defl(RealD tol,
Integer maxit,
LinearOperatorBase<Field> &FineLinop,
LinearFunction<Field> &Smoother,
std::vector<Field> &_evec,
std::vector<RealD> &_eval) :
TwoLevelCG<Field>(tol,maxit,FineLinop,Smoother,_evec[0].Grid()),
evec(_evec),
eval(_eval)
{};
// Can just inherit existing M2
// Can just inherit existing M3
// Simple vstart - do nothing
virtual void Vstart(Field & x,const Field & src){
x=src; // Could apply Q
};
// Override PcgM1
virtual void PcgM1(Field & in, Field & out)
{
int N=evec.size();
Field Pin(this->grid);
Field Qin(this->grid);
//MP + Q = M(1-AQ) + Q = M
// // If we are eigenvector deflating in coarse space
// // Q = Sum_i |phi_i> 1/lambda_i <phi_i|
// // A Q = Sum_i |phi_i> <phi_i|
// // M(1-AQ) = M(1-proj) + Q
Qin.Checkerboard()=in.Checkerboard();
Qin = Zero();
Pin = in;
for (int i=0;i<N;i++) {
const Field& tmp = evec[i];
auto ip = TensorRemove(innerProduct(tmp,in));
axpy(Qin, ip / eval[i],tmp,Qin);
axpy(Pin, -ip ,tmp,Pin);
}
this->_Smoother(Pin,out);
out = out + Qin;
}
};
NAMESPACE_END(Grid);
#endif