1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-10 22:20:45 +01:00
Grid/Grid/algorithms/CoarsenedMatrix.h
2020-06-12 18:16:12 -04:00

636 lines
18 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/CoarsenedMatrix.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_ALGORITHM_COARSENED_MATRIX_H
#define GRID_ALGORITHM_COARSENED_MATRIX_H
NAMESPACE_BEGIN(Grid);
template<class vobj,class CComplex>
inline void blockMaskedInnerProduct(Lattice<CComplex> &CoarseInner,
const Lattice<decltype(innerProduct(vobj(),vobj()))> &FineMask,
const Lattice<vobj> &fineX,
const Lattice<vobj> &fineY)
{
typedef decltype(innerProduct(vobj(),vobj())) dotp;
GridBase *coarse(CoarseInner.Grid());
GridBase *fine (fineX.Grid());
Lattice<dotp> fine_inner(fine); fine_inner.Checkerboard() = fineX.Checkerboard();
Lattice<dotp> fine_inner_msk(fine);
// Multiply could be fused with innerProduct
// Single block sum kernel could do both masks.
fine_inner = localInnerProduct(fineX,fineY);
mult(fine_inner_msk, fine_inner,FineMask);
blockSum(CoarseInner,fine_inner_msk);
}
class Geometry {
public:
int npoint;
std::vector<int> directions ;
std::vector<int> displacements;
Geometry(int _d) {
int base = (_d==5) ? 1:0;
// make coarse grid stencil for 4d , not 5d
if ( _d==5 ) _d=4;
npoint = 2*_d+1;
directions.resize(npoint);
displacements.resize(npoint);
for(int d=0;d<_d;d++){
directions[d ] = d+base;
directions[d+_d] = d+base;
displacements[d ] = +1;
displacements[d+_d]= -1;
}
directions [2*_d]=0;
displacements[2*_d]=0;
}
};
template<class Fobj,class CComplex,int nbasis>
class Aggregation {
public:
typedef iVector<CComplex,nbasis > siteVector;
typedef Lattice<siteVector> CoarseVector;
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
GridBase *CoarseGrid;
GridBase *FineGrid;
std::vector<Lattice<Fobj> > subspace;
int checkerboard;
int Checkerboard(void){return checkerboard;}
Aggregation(GridBase *_CoarseGrid,GridBase *_FineGrid,int _checkerboard) :
CoarseGrid(_CoarseGrid),
FineGrid(_FineGrid),
subspace(nbasis,_FineGrid),
checkerboard(_checkerboard)
{
};
void Orthogonalise(void){
CoarseScalar InnerProd(CoarseGrid);
std::cout << GridLogMessage <<" Block Gramm-Schmidt pass 1"<<std::endl;
blockOrthogonalise(InnerProd,subspace);
}
void ProjectToSubspace(CoarseVector &CoarseVec,const FineField &FineVec){
blockProject(CoarseVec,FineVec,subspace);
}
void PromoteFromSubspace(const CoarseVector &CoarseVec,FineField &FineVec){
FineVec.Checkerboard() = subspace[0].Checkerboard();
blockPromote(CoarseVec,FineVec,subspace);
}
virtual void CreateSubspace(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,int nn=nbasis) {
RealD scale;
ConjugateGradient<FineField> CG(1.0e-2,100,false);
FineField noise(FineGrid);
FineField Mn(FineGrid);
for(int b=0;b<nn;b++){
subspace[b] = Zero();
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise ["<<b<<"] <n|MdagM|n> "<<norm2(Mn)<<std::endl;
for(int i=0;i<1;i++){
CG(hermop,noise,subspace[b]);
noise = subspace[b];
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
}
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "filtered["<<b<<"] <f|MdagM|f> "<<norm2(Mn)<<std::endl;
subspace[b] = noise;
}
}
////////////////////////////////////////////////////////////////////////////////////////////////
// World of possibilities here. But have tried quite a lot of experiments (250+ jobs run on Summit)
// and this is the best I found
////////////////////////////////////////////////////////////////////////////////////////////////
virtual void CreateSubspaceChebyshev(GridParallelRNG &RNG,LinearOperatorBase<FineField> &hermop,
int nn,
double hi,
double lo,
int orderfilter,
int ordermin,
int orderstep,
double filterlo
) {
RealD scale;
FineField noise(FineGrid);
FineField Mn(FineGrid);
FineField tmp(FineGrid);
// New normalised noise
gaussian(RNG,noise);
scale = std::pow(norm2(noise),-0.5);
noise=noise*scale;
// Initial matrix element
hermop.Op(noise,Mn); std::cout<<GridLogMessage << "noise <n|MdagM|n> "<<norm2(Mn)<<std::endl;
int b =0;
{
// Filter
Chebyshev<FineField> Cheb(lo,hi,orderfilter);
Cheb(hermop,noise,Mn);
// normalise
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << "filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
b++;
}
// Generate a full sequence of Chebyshevs
{
lo=filterlo;
noise=Mn;
FineField T0(FineGrid); T0 = noise;
FineField T1(FineGrid);
FineField T2(FineGrid);
FineField y(FineGrid);
FineField *Tnm = &T0;
FineField *Tn = &T1;
FineField *Tnp = &T2;
// Tn=T1 = (xscale M + mscale)in
RealD xscale = 2.0/(hi-lo);
RealD mscale = -(hi+lo)/(hi-lo);
hermop.HermOp(T0,y);
T1=y*xscale+noise*mscale;
for(int n=2;n<=ordermin+orderstep*(nn-2);n++){
hermop.HermOp(*Tn,y);
autoView( y_v , y, AcceleratorWrite);
autoView( Tn_v , (*Tn), AcceleratorWrite);
autoView( Tnp_v , (*Tnp), AcceleratorWrite);
autoView( Tnm_v , (*Tnm), AcceleratorWrite);
const int Nsimd = CComplex::Nsimd();
accelerator_forNB(ss, FineGrid->oSites(), Nsimd, {
coalescedWrite(y_v[ss],xscale*y_v(ss)+mscale*Tn_v(ss));
coalescedWrite(Tnp_v[ss],2.0*y_v(ss)-Tnm_v(ss));
});
// Possible more fine grained control is needed than a linear sweep,
// but huge productivity gain if this is simple algorithm and not a tunable
int m =1;
if ( n>=ordermin ) m=n-ordermin;
if ( (m%orderstep)==0 ) {
Mn=*Tnp;
scale = std::pow(norm2(Mn),-0.5); Mn=Mn*scale;
subspace[b] = Mn;
hermop.Op(Mn,tmp);
std::cout<<GridLogMessage << n<<" filt ["<<b<<"] <n|MdagM|n> "<<norm2(tmp)<<std::endl;
b++;
}
// Cycle pointers to avoid copies
FineField *swizzle = Tnm;
Tnm =Tn;
Tn =Tnp;
Tnp =swizzle;
}
}
assert(b==nn);
}
};
// Fine Object == (per site) type of fine field
// nbasis == number of deflation vectors
template<class Fobj,class CComplex,int nbasis>
class CoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
public:
typedef iVector<CComplex,nbasis > siteVector;
typedef Lattice<CComplex > CoarseComplexField;
typedef Lattice<siteVector> CoarseVector;
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
typedef iMatrix<CComplex,nbasis > Cobj;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
////////////////////
// Data members
////////////////////
Geometry geom;
GridBase * _grid;
int hermitian;
CartesianStencil<siteVector,siteVector,int> Stencil;
std::vector<CoarseMatrix> A;
///////////////////////
// Interface
///////////////////////
GridBase * Grid(void) { return _grid; }; // this is all the linalg routines need to know
void M (const CoarseVector &in, CoarseVector &out)
{
conformable(_grid,in.Grid());
conformable(in.Grid(),out.Grid());
SimpleCompressor<siteVector> compressor;
Stencil.HaloExchange(in,compressor);
autoView( in_v , in, AcceleratorRead);
autoView( out_v , out, AcceleratorWrite);
typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
Aview *Aview_p = & AcceleratorViewContainer[0];
const int Nsimd = CComplex::Nsimd();
typedef decltype(coalescedRead(in_v[0])) calcVector;
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
int osites=Grid()->oSites();
accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
int b = sss%nbasis;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
for(int point=0;point<geom.npoint;point++){
SE=Stencil.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(Stencil.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
}
}
coalescedWrite(out_v[ss](b),res);
});
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
};
void Mdag (const CoarseVector &in, CoarseVector &out)
{
if(hermitian) {
// corresponds to Petrov-Galerkin coarsening
return M(in,out);
} else {
// corresponds to Galerkin coarsening
CoarseVector tmp(Grid());
G5C(tmp, in);
M(tmp, out);
G5C(out, out);
}
};
void MdirComms(const CoarseVector &in)
{
SimpleCompressor<siteVector> compressor;
Stencil.HaloExchange(in,compressor);
}
void MdirCalc(const CoarseVector &in, CoarseVector &out, int point)
{
conformable(_grid,in.Grid());
conformable(_grid,out.Grid());
typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(A[p].View(AcceleratorRead));
Aview *Aview_p = & AcceleratorViewContainer[0];
autoView( out_v , out, AcceleratorWrite);
autoView( in_v , in, AcceleratorRead);
const int Nsimd = CComplex::Nsimd();
typedef decltype(coalescedRead(in_v[0])) calcVector;
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
accelerator_for(sss, Grid()->oSites()*nbasis, Nsimd, {
int ss = sss/nbasis;
int b = sss%nbasis;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
SE=Stencil.GetEntry(ptype,point,ss);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(Stencil.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + coalescedRead(Aview_p[point][ss](b,bb))*nbr(bb);
}
coalescedWrite(out_v[ss](b),res);
});
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
}
void MdirAll(const CoarseVector &in,std::vector<CoarseVector> &out)
{
this->MdirComms(in);
int ndir=geom.npoint-1;
if ((out.size()!=ndir)&&(out.size()!=ndir+1)) {
std::cout <<"MdirAll out size "<< out.size()<<std::endl;
std::cout <<"MdirAll ndir "<< ndir<<std::endl;
assert(0);
}
for(int p=0;p<ndir;p++){
MdirCalc(in,out[p],p);
}
};
void Mdir(const CoarseVector &in, CoarseVector &out, int dir, int disp){
this->MdirComms(in);
int ndim = in.Grid()->Nd();
//////////////
// 4D action like wilson
// 0+ => 0
// 0- => 1
// 1+ => 2
// 1- => 3
// etc..
//////////////
// 5D action like DWF
// 1+ => 0
// 1- => 1
// 2+ => 2
// 2- => 3
// etc..
auto point = [dir, disp, ndim](){
if(dir == 0 and disp == 0)
return 8;
else if ( ndim==4 ) {
return (4 * dir + 1 - disp) / 2;
} else {
return (4 * (dir-1) + 1 - disp) / 2;
}
}();
MdirCalc(in,out,point);
};
void Mdiag(const CoarseVector &in, CoarseVector &out)
{
int point=geom.npoint-1;
MdirCalc(in, out, point); // No comms
};
CoarsenedMatrix(GridCartesian &CoarseGrid, int hermitian_=0) :
_grid(&CoarseGrid),
geom(CoarseGrid._ndimension),
hermitian(hermitian_),
Stencil(&CoarseGrid,geom.npoint,Even,geom.directions,geom.displacements,0),
A(geom.npoint,&CoarseGrid)
{
};
void CoarsenOperator(GridBase *FineGrid,LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & Subspace)
{
typedef Lattice<typename Fobj::tensor_reduced> FineComplexField;
typedef typename Fobj::scalar_type scalar_type;
FineComplexField one(FineGrid); one=scalar_type(1.0,0.0);
FineComplexField zero(FineGrid); zero=scalar_type(0.0,0.0);
std::vector<FineComplexField> masks(geom.npoint,FineGrid);
FineComplexField imask(FineGrid); // contributions from within this block
FineComplexField omask(FineGrid); // contributions from outwith this block
FineComplexField evenmask(FineGrid);
FineComplexField oddmask(FineGrid);
FineField phi(FineGrid);
FineField tmp(FineGrid);
FineField zz(FineGrid); zz=Zero();
FineField Mphi(FineGrid);
FineField Mphie(FineGrid);
FineField Mphio(FineGrid);
std::vector<FineField> Mphi_p(geom.npoint,FineGrid);
Lattice<iScalar<vInteger> > coor (FineGrid);
Lattice<iScalar<vInteger> > bcoor(FineGrid);
Lattice<iScalar<vInteger> > bcb (FineGrid); bcb = Zero();
CoarseVector iProj(Grid());
CoarseVector oProj(Grid());
CoarseVector SelfProj(Grid());
CoarseComplexField iZProj(Grid());
CoarseComplexField oZProj(Grid());
CoarseScalar InnerProd(Grid());
// Orthogonalise the subblocks over the basis
blockOrthogonalise(InnerProd,Subspace.subspace);
// Compute the matrix elements of linop between this orthonormal
// set of vectors.
int self_stencil=-1;
for(int p=0;p<geom.npoint;p++)
{
int dir = geom.directions[p];
int disp = geom.displacements[p];
A[p]=Zero();
if( geom.displacements[p]==0){
self_stencil=p;
}
Integer block=(FineGrid->_rdimensions[dir])/(Grid()->_rdimensions[dir]);
LatticeCoordinate(coor,dir);
///////////////////////////////////////////////////////
// Work out even and odd block checkerboarding for fast diagonal term
///////////////////////////////////////////////////////
if ( disp==1 ) {
bcb = bcb + div(coor,block);
}
if ( disp==0 ) {
masks[p]= Zero();
} else if ( disp==1 ) {
masks[p] = where(mod(coor,block)==(block-1),one,zero);
} else if ( disp==-1 ) {
masks[p] = where(mod(coor,block)==(Integer)0,one,zero);
}
}
evenmask = where(mod(bcb,2)==(Integer)0,one,zero);
oddmask = one-evenmask;
assert(self_stencil!=-1);
for(int i=0;i<nbasis;i++){
phi=Subspace.subspace[i];
// std::cout << GridLogMessage<< "CoarsenMatrix vector "<<i << std::endl;
linop.OpDirAll(phi,Mphi_p);
linop.OpDiag (phi,Mphi_p[geom.npoint-1]);
for(int p=0;p<geom.npoint;p++){
Mphi = Mphi_p[p];
int dir = geom.directions[p];
int disp = geom.displacements[p];
if ( (disp==-1) || (!hermitian ) ) {
////////////////////////////////////////////////////////////////////////
// Pick out contributions coming from this cell and neighbour cell
////////////////////////////////////////////////////////////////////////
omask = masks[p];
imask = one-omask;
for(int j=0;j<nbasis;j++){
blockMaskedInnerProduct(oZProj,omask,Subspace.subspace[j],Mphi);
autoView( iZProj_v , iZProj, AcceleratorRead) ;
autoView( oZProj_v , oZProj, AcceleratorRead) ;
autoView( A_p , A[p], AcceleratorWrite);
autoView( A_self , A[self_stencil], AcceleratorWrite);
accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{ coalescedWrite(A_p[ss](j,i),oZProj_v(ss)); });
}
}
}
///////////////////////////////////////////
// Faster alternate self coupling.. use hermiticity to save 2x
///////////////////////////////////////////
{
mult(tmp,phi,evenmask); linop.Op(tmp,Mphie);
mult(tmp,phi,oddmask ); linop.Op(tmp,Mphio);
{
autoView( tmp_ , tmp, AcceleratorWrite);
autoView( evenmask_ , evenmask, AcceleratorRead);
autoView( oddmask_ , oddmask, AcceleratorRead);
autoView( Mphie_ , Mphie, AcceleratorRead);
autoView( Mphio_ , Mphio, AcceleratorRead);
accelerator_for(ss, FineGrid->oSites(), Fobj::Nsimd(),{
coalescedWrite(tmp_[ss],evenmask_(ss)*Mphie_(ss) + oddmask_(ss)*Mphio_(ss));
});
}
blockProject(SelfProj,tmp,Subspace.subspace);
autoView( SelfProj_ , SelfProj, AcceleratorRead);
autoView( A_self , A[self_stencil], AcceleratorWrite);
accelerator_for(ss, Grid()->oSites(), Fobj::Nsimd(),{
for(int j=0;j<nbasis;j++){
coalescedWrite(A_self[ss](j,i), SelfProj_(ss)(j));
}
});
}
}
if(hermitian) {
std::cout << GridLogMessage << " ForceHermitian, new code "<<std::endl;
ForceHermitian();
}
}
void ForceHermitian(void) {
CoarseMatrix Diff (Grid());
for(int p=0;p<geom.npoint;p++){
int dir = geom.directions[p];
int disp = geom.displacements[p];
if(disp==-1) {
// Find the opposite link
for(int pp=0;pp<geom.npoint;pp++){
int dirp = geom.directions[pp];
int dispp = geom.displacements[pp];
if ( (dirp==dir) && (dispp==1) ){
// Diff = adj(Cshift(A[p],dir,1)) - A[pp];
// std::cout << GridLogMessage<<" Replacing stencil leg "<<pp<<" with leg "<<p<< " diff "<<norm2(Diff) <<std::endl;
A[pp] = adj(Cshift(A[p],dir,1));
}
}
}
}
}
};
NAMESPACE_END(Grid);
#endif