1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-14 17:55:38 +00:00
Grid/lib/communicator/Communicator_mpi.cc
Peter Boyle dc814f30da Binary IO file for generic Grid array parallel I/O.
Number of IO MPI tasks can be varied by selecting which
dimensions use parallel IO and which dimensions use Serial send to boss
I/O.

Thus can neck down from, say 1024 nodes = 4x4x8x8 to {1,8,32,64,128,256,1024} nodes
doing the I/O.

Interpolates nicely between ALL nodes write their data, a single boss per time-plane
in processor space [old UKQCD fortran code did this], and a single node doing all I/O.

Not sure I have the transfer sizes big enough and am not overly convinced fstream
is guaranteed to not give buffer inconsistencies unless I set streambuf size to zero.

Practically it has worked on 8 tasks, 2x1x2x2 writing /cloning NERSC configurations
on my MacOS + OpenMPI and Clang environment.

It is VERY easy to switch to pwrite at a later date, and also easy to send x-strips around from
each node in order to gather bigger chunks at the syscall level.

That would push us up to the circa 8x 18*4*8 == 4KB size write chunk, and by taking, say, x/y non
parallel we get to 16MB contiguous chunks written in multi 4KB transactions
per IOnode in 64^3 lattices for configuration I/O.

I suspect this is fine for system performance.
2015-08-26 13:40:29 +01:00

158 lines
3.9 KiB
C++

#include "Grid.h"
#include <mpi.h>
namespace Grid {
// Should error check all MPI calls.
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
{
_ndimension = processors.size();
std::vector<int> periodic(_ndimension,1);
_Nprocessors=1;
_processors = processors;
_processor_coor.resize(_ndimension);
MPI_Cart_create(MPI_COMM_WORLD, _ndimension,&_processors[0],&periodic[0],1,&communicator);
MPI_Comm_rank(communicator,&_processor);
MPI_Cart_coords(communicator,_processor,_ndimension,&_processor_coor[0]);
for(int i=0;i<_ndimension;i++){
_Nprocessors*=_processors[i];
}
int Size;
MPI_Comm_size(communicator,&Size);
assert(Size==_Nprocessors);
}
void CartesianCommunicator::GlobalSum(uint32_t &u){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&u,1,MPI_UINT32_T,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(float &f){
int ierr=MPI_Allreduce(MPI_IN_PLACE,&f,1,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSumVector(float *f,int N)
{
int ierr=MPI_Allreduce(MPI_IN_PLACE,f,N,MPI_FLOAT,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSum(double &d)
{
int ierr = MPI_Allreduce(MPI_IN_PLACE,&d,1,MPI_DOUBLE,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::GlobalSumVector(double *d,int N)
{
int ierr = MPI_Allreduce(MPI_IN_PLACE,d,N,MPI_DOUBLE,MPI_SUM,communicator);
assert(ierr==0);
}
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
{
int ierr=MPI_Cart_shift(communicator,dim,shift,&source,&dest);
assert(ierr==0);
}
int CartesianCommunicator::RankFromProcessorCoor(std::vector<int> &coor)
{
int rank;
int ierr=MPI_Cart_rank (communicator, &coor[0], &rank);
assert(ierr==0);
return rank;
}
void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &coor)
{
coor.resize(_ndimension);
int ierr=MPI_Cart_coords (communicator, rank, _ndimension,&coor[0]);
assert(ierr==0);
}
// Basic Halo comms primitive
void CartesianCommunicator::SendToRecvFrom(void *xmit,
int dest,
void *recv,
int from,
int bytes)
{
std::vector<CommsRequest_t> reqs(0);
SendToRecvFromBegin(reqs,xmit,dest,recv,from,bytes);
SendToRecvFromComplete(reqs);
}
void CartesianCommunicator::RecvFrom(void *recv,
int from,
int bytes)
{
MPI_Status stat;
int ierr=MPI_Recv(recv, bytes, MPI_CHAR,from,from,communicator,&stat);
assert(ierr==0);
}
void CartesianCommunicator::SendTo(void *xmit,
int dest,
int bytes)
{
int rank = _processor; // used for tag; must know who it comes from
int ierr = MPI_Send(xmit, bytes, MPI_CHAR,dest,_processor,communicator);
assert(ierr==0);
}
// Basic Halo comms primitive
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes)
{
MPI_Request xrq;
MPI_Request rrq;
int rank = _processor;
int ierr;
ierr =MPI_Isend(xmit, bytes, MPI_CHAR,dest,_processor,communicator,&xrq);
ierr|=MPI_Irecv(recv, bytes, MPI_CHAR,from,from,communicator,&rrq);
assert(ierr==0);
list.push_back(xrq);
list.push_back(rrq);
}
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
{
int nreq=list.size();
std::vector<MPI_Status> status(nreq);
int ierr = MPI_Waitall(nreq,&list[0],&status[0]);
assert(ierr==0);
}
void CartesianCommunicator::Barrier(void)
{
int ierr = MPI_Barrier(communicator);
assert(ierr==0);
}
void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
{
int ierr=MPI_Bcast(data,
bytes,
MPI_BYTE,
root,
communicator);
assert(ierr==0);
}
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
{
int ierr= MPI_Bcast(data,
bytes,
MPI_BYTE,
root,
MPI_COMM_WORLD);
assert(ierr==0);
}
}