1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00
Grid/lib/simd/Grid_avx.h
2015-05-27 10:49:33 +09:00

405 lines
12 KiB
C++

//----------------------------------------------------------------------
/*! @file Grid_avx.h
@brief Optimization libraries for AVX1/2 instructions set
Using intrinsics
*/
// Time-stamp: <2015-05-22 18:58:27 neo>
//----------------------------------------------------------------------
#include <immintrin.h>
// _mm256_set_m128i(hi,lo); // not defined in all versions of immintrin.h
#ifndef _mm256_set_m128i
#define _mm256_set_m128i(hi,lo) _mm256_insertf128_si256(_mm256_castsi128_si256(lo),(hi),1)
#endif
namespace Optimization {
struct Vsplat{
//Complex float
inline __m256 operator()(float a, float b){
return _mm256_set_ps(b,a,b,a,b,a,b,a);
}
// Real float
inline __m256 operator()(float a){
return _mm256_set_ps(a,a,a,a,a,a,a,a);
}
//Complex double
inline __m256d operator()(double a, double b){
return _mm256_set_pd(b,a,b,a);
}
//Real double
inline __m256d operator()(double a){
return _mm256_set_pd(a,a,a,a);
}
//Integer
inline __m256i operator()(Integer a){
return _mm256_set1_epi32(a);
}
};
struct Vstore{
//Float
inline void operator()(__m256 a, float* F){
_mm256_store_ps(F,a);
}
//Double
inline void operator()(__m256d a, double* D){
_mm256_store_pd(D,a);
}
//Integer
inline void operator()(__m256i a, Integer* I){
_mm256_store_si256((__m256i*)I,a);
}
};
struct Vstream{
//Float
inline void operator()(float * a, __m256 b){
_mm256_stream_ps(a,b);
}
//Double
inline void operator()(double * a, __m256d b){
_mm256_stream_pd(a,b);
}
};
struct Vset{
// Complex float
inline __m256 operator()(Grid::ComplexF *a){
return _mm256_set_ps(a[3].imag(),a[3].real(),a[2].imag(),a[2].real(),a[1].imag(),a[1].real(),a[0].imag(),a[0].real());
}
// Complex double
inline __m256d operator()(Grid::ComplexD *a){
return _mm256_set_pd(a[1].imag(),a[1].real(),a[0].imag(),a[0].real());
}
// Real float
inline __m256 operator()(float *a){
return _mm256_set_ps(a[7],a[6],a[5],a[4],a[3],a[2],a[1],a[0]);
}
// Real double
inline __m256d operator()(double *a){
return _mm256_set_pd(a[3],a[2],a[1],a[0]);
}
// Integer
inline __m256i operator()(Integer *a){
return _mm256_set_epi32(a[7],a[6],a[5],a[4],a[3],a[2],a[1],a[0]);
}
};
template <typename Out_type, typename In_type>
struct Reduce{
//Need templated class to overload output type
//General form must generate error if compiled
inline Out_type operator()(In_type in){
printf("Error, using wrong Reduce function\n");
exit(1);
return 0;
}
};
/////////////////////////////////////////////////////
// Arithmetic operations
/////////////////////////////////////////////////////
struct Sum{
//Complex/Real float
inline __m256 operator()(__m256 a, __m256 b){
return _mm256_add_ps(a,b);
}
//Complex/Real double
inline __m256d operator()(__m256d a, __m256d b){
return _mm256_add_pd(a,b);
}
//Integer
inline __m256i operator()(__m256i a, __m256i b){
#if defined (AVX1)
__m128i a0,a1;
__m128i b0,b1;
a0 = _mm256_extractf128_si256(a,0);
b0 = _mm256_extractf128_si256(b,0);
a1 = _mm256_extractf128_si256(a,1);
b1 = _mm256_extractf128_si256(b,1);
a0 = _mm_add_epi32(a0,b0);
a1 = _mm_add_epi32(a1,b1);
return _mm256_set_m128i(a1,a0);
#endif
#if defined (AVX2)
return _mm256_add_epi32(a,b);
#endif
}
};
struct Sub{
//Complex/Real float
inline __m256 operator()(__m256 a, __m256 b){
return _mm256_sub_ps(a,b);
}
//Complex/Real double
inline __m256d operator()(__m256d a, __m256d b){
return _mm256_sub_pd(a,b);
}
//Integer
inline __m256i operator()(__m256i a, __m256i b){
#if defined (AVX1)
__m128i a0,a1;
__m128i b0,b1;
a0 = _mm256_extractf128_si256(a,0);
b0 = _mm256_extractf128_si256(b,0);
a1 = _mm256_extractf128_si256(a,1);
b1 = _mm256_extractf128_si256(b,1);
a0 = _mm_sub_epi32(a0,b0);
a1 = _mm_sub_epi32(a1,b1);
return _mm256_set_m128i(a1,a0);
#endif
#if defined (AVX2)
return _mm256_sub_epi32(a,b);
#endif
}
};
struct MultComplex{
// Complex float
inline __m256 operator()(__m256 a, __m256 b){
__m256 ymm0,ymm1,ymm2;
ymm0 = _mm256_shuffle_ps(a,a,_MM_SHUFFLE(2,2,0,0)); // ymm0 <- ar ar,
ymm0 = _mm256_mul_ps(ymm0,b); // ymm0 <- ar bi, ar br
// FIXME AVX2 could MAC
ymm1 = _mm256_shuffle_ps(b,b,_MM_SHUFFLE(2,3,0,1)); // ymm1 <- br,bi
ymm2 = _mm256_shuffle_ps(a,a,_MM_SHUFFLE(3,3,1,1)); // ymm2 <- ai,ai
ymm1 = _mm256_mul_ps(ymm1,ymm2); // ymm1 <- br ai, ai bi
return _mm256_addsub_ps(ymm0,ymm1);
}
// Complex double
inline __m256d operator()(__m256d a, __m256d b){
//Multiplication of (ak+ibk)*(ck+idk)
// a + i b can be stored as a data structure
//From intel optimisation reference guide
/*
movsldup xmm0, Src1; load real parts into the destination,
; a1, a1, a0, a0
movaps xmm1, src2; load the 2nd pair of complex values, ; i.e. d1, c1, d0, c0
mulps xmm0, xmm1; temporary results, a1d1, a1c1, a0d0, ; a0c0
shufps xmm1, xmm1, b1; reorder the real and imaginary ; parts, c1, d1, c0, d0
movshdup xmm2, Src1; load the imaginary parts into the ; destination, b1, b1, b0, b0
mulps xmm2, xmm1; temporary results, b1c1, b1d1, b0c0, ; b0d0
addsubps xmm0, xmm2; b1c1+a1d1, a1c1 -b1d1, b0c0+a0d
VSHUFPD (VEX.256 encoded version)
IF IMM0[0] = 0
THEN DEST[63:0]=SRC1[63:0] ELSE DEST[63:0]=SRC1[127:64] FI;
IF IMM0[1] = 0
THEN DEST[127:64]=SRC2[63:0] ELSE DEST[127:64]=SRC2[127:64] FI;
IF IMM0[2] = 0
THEN DEST[191:128]=SRC1[191:128] ELSE DEST[191:128]=SRC1[255:192] FI;
IF IMM0[3] = 0
THEN DEST[255:192]=SRC2[191:128] ELSE DEST[255:192]=SRC2[255:192] FI; // Ox5 r<->i ; 0xC unchanged
*/
__m256d ymm0,ymm1,ymm2;
ymm0 = _mm256_shuffle_pd(a,a,0x0); // ymm0 <- ar ar, ar,ar b'00,00
ymm0 = _mm256_mul_pd(ymm0,b); // ymm0 <- ar bi, ar br
ymm1 = _mm256_shuffle_pd(b,b,0x5); // ymm1 <- br,bi b'01,01
ymm2 = _mm256_shuffle_pd(a,a,0xF); // ymm2 <- ai,ai b'11,11
ymm1 = _mm256_mul_pd(ymm1,ymm2); // ymm1 <- br ai, ai bi
return _mm256_addsub_pd(ymm0,ymm1);
}
};
struct Mult{
// Real float
inline __m256 operator()(__m256 a, __m256 b){
return _mm256_mul_ps(a,b);
}
// Real double
inline __m256d operator()(__m256d a, __m256d b){
return _mm256_mul_pd(a,b);
}
// Integer
inline __m256i operator()(__m256i a, __m256i b){
#if defined (AVX1)
__m128i a0,a1;
__m128i b0,b1;
a0 = _mm256_extractf128_si256(a,0);
b0 = _mm256_extractf128_si256(b,0);
a1 = _mm256_extractf128_si256(a,1);
b1 = _mm256_extractf128_si256(b,1);
a0 = _mm_mul_epi32(a0,b0);
a1 = _mm_mul_epi32(a1,b1);
return _mm256_set_m128i(a1,a0);
#endif
#if defined (AVX2)
return _mm256_mul_epi32(a,b);
#endif
}
};
struct Conj{
// Complex single
inline __m256 operator()(__m256 in){
return _mm256_xor_ps(_mm256_addsub_ps(_mm256_setzero_ps(),in), _mm256_set1_ps(-0.f));
}
// Complex double
inline __m256d operator()(__m256d in){
return _mm256_xor_pd(_mm256_addsub_pd(_mm256_setzero_pd(),in), _mm256_set1_pd(-0.f));//untested
/*
// original
// addsubps 0, inv=>0+in.v[3] 0-in.v[2], 0+in.v[1], 0-in.v[0], ...
__m256d tmp = _mm256_addsub_pd(_mm256_setzero_pd(),_mm256_shuffle_pd(in,in,0x5));
return _mm256_shuffle_pd(tmp,tmp,0x5);
*/
}
// do not define for integer input
};
struct TimesMinusI{
//Complex single
inline __m256 operator()(__m256 in, __m256 ret){
__m256 tmp =_mm256_addsub_ps(_mm256_setzero_ps(),in); // r,-i
return _mm256_shuffle_ps(tmp,tmp,_MM_SHUFFLE(2,3,0,1)); //-i,r
}
//Complex double
inline __m256d operator()(__m256d in, __m256d ret){
__m256d tmp = _mm256_addsub_pd(_mm256_setzero_pd(),in); // r,-i
return _mm256_shuffle_pd(tmp,tmp,0x5);
}
};
struct TimesI{
//Complex single
inline __m256 operator()(__m256 in, __m256 ret){
__m256 tmp =_mm256_shuffle_ps(in,in,_MM_SHUFFLE(2,3,0,1)); // i,r
return _mm256_addsub_ps(_mm256_setzero_ps(),tmp); // i,-r
}
//Complex double
inline __m256d operator()(__m256d in, __m256d ret){
__m256d tmp = _mm256_shuffle_pd(in,in,0x5);
return _mm256_addsub_pd(_mm256_setzero_pd(),tmp); // i,-r
}
};
//////////////////////////////////////////////
// Some Template specialization
template < typename vtype >
void permute(vtype &a, vtype &b, int perm) {
union {
__m256 f;
vtype v;
} conv;
conv.v = b;
switch (perm){
// 8x32 bits=>3 permutes
case 2: conv.f = _mm256_shuffle_ps(conv.f,conv.f,_MM_SHUFFLE(2,3,0,1)); break;
case 1: conv.f = _mm256_shuffle_ps(conv.f,conv.f,_MM_SHUFFLE(1,0,3,2)); break;
case 0: conv.f = _mm256_permute2f128_ps(conv.f,conv.f,0x01); break;
default: assert(0); break;
}
a = conv.v;
}
//Complex float Reduce
template<>
inline Grid::ComplexF Reduce<Grid::ComplexF, __m256>::operator()(__m256 in){
__m256 v1,v2;
union {
__m256 v;
float f[8];
} conv;
Optimization::permute(v1,in,0); // sse 128; paired complex single
v1 = _mm256_add_ps(v1,in);
Optimization::permute(v2,v1,1); // avx 256; quad complex single
v1 = _mm256_add_ps(v1,v2);
conv.v = v1;
return Grid::ComplexF(conv.f[0],conv.f[1]);
}
//Real float Reduce
template<>
inline Grid::RealF Reduce<Grid::RealF, __m256>::operator()(__m256 in){
__m256 v1,v2;
Optimization::permute(v1,in,0); // avx 256; octo-double
v1 = _mm256_add_ps(v1,in);
Optimization::permute(v2,v1,1);
v1 = _mm256_add_ps(v1,v2);
Optimization::permute(v2,v1,2);
v1 = _mm256_add_ps(v1,v2);
return v1[0];
}
//Complex double Reduce
template<>
inline Grid::ComplexD Reduce<Grid::ComplexD, __m256d>::operator()(__m256d in){
__m256d v1;
Optimization::permute(v1,in,0); // sse 128; paired complex single
v1 = _mm256_add_pd(v1,in);
return Grid::ComplexD(v1[0],v1[1]);
}
//Real double Reduce
template<>
inline Grid::RealD Reduce<Grid::RealD, __m256d>::operator()(__m256d in){
__m256d v1,v2;
Optimization::permute(v1,in,0); // avx 256; quad double
v1 = _mm256_add_pd(v1,in);
Optimization::permute(v2,v1,1);
v1 = _mm256_add_pd(v1,v2);
return v1[0];
}
//Integer Reduce
template<>
inline Integer Reduce<Integer, __m256i>::operator()(__m256i in){
// FIXME unimplemented
printf("Reduce : Missing integer implementation -> FIX\n");
assert(0);
}
}
//////////////////////////////////////////////////////////////////////////////////////
// Here assign types
namespace Grid {
typedef __m256 SIMD_Ftype; // Single precision type
typedef __m256d SIMD_Dtype; // Double precision type
typedef __m256i SIMD_Itype; // Integer type
// Function name aliases
typedef Optimization::Vsplat VsplatSIMD;
typedef Optimization::Vstore VstoreSIMD;
typedef Optimization::Vset VsetSIMD;
typedef Optimization::Vstream VstreamSIMD;
template <typename S, typename T> using ReduceSIMD = Optimization::Reduce<S,T>;
// Arithmetic operations
typedef Optimization::Sum SumSIMD;
typedef Optimization::Sub SubSIMD;
typedef Optimization::Mult MultSIMD;
typedef Optimization::MultComplex MultComplexSIMD;
typedef Optimization::Conj ConjSIMD;
typedef Optimization::TimesMinusI TimesMinusISIMD;
typedef Optimization::TimesI TimesISIMD;
}