1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 15:55:37 +00:00
Grid/lib/qcd/smearing/StoutSmearing.h
2016-07-04 15:35:37 +01:00

168 lines
4.5 KiB
C++

/*
@file stoutSmear.hpp
@brief Declares Stout smearing class
*/
#ifndef STOUT_SMEAR_
#define STOUT_SMEAR_
namespace Grid {
namespace QCD {
/*! @brief Stout smearing of link variable. */
template <class Gimpl>
class Smear_Stout: public Smear<Gimpl> {
private:
const Smear < Gimpl > * SmearBase;
public:
INHERIT_GIMPL_TYPES(Gimpl)
Smear_Stout(Smear < Gimpl >* base):SmearBase(base){
static_assert(Nc==3, "Stout smearing currently implemented only for Nc==3");
}
/*! Default constructor */
Smear_Stout(double rho = 1.0):SmearBase(new Smear_APE < Gimpl > (rho)){
static_assert(Nc==3, "Stout smearing currently implemented only for Nc==3");
}
~Smear_Stout(){} //delete SmearBase...
void smear(GaugeField& u_smr,const GaugeField& U) const{
GaugeField C(U._grid);
GaugeLinkField tmp(U._grid), iq_mu(U._grid), Umu(U._grid);
std::cout<< GridLogDebug << "Stout smearing started\n";
//Smear the configurations
SmearBase->smear(C, U);
for (int mu = 0; mu<Nd; mu++)
{
tmp = peekLorentz(C,mu);
Umu = peekLorentz(U,mu);
iq_mu = Ta(tmp * adj(Umu)); // iq_mu = Ta(Omega_mu) to match the signs with the paper
exponentiate_iQ(tmp, iq_mu);
pokeLorentz(u_smr, tmp*Umu, mu);// u_smr = exp(iQ_mu)*U_mu
}
std::cout<< GridLogDebug << "Stout smearing completed\n";
};
void derivative(GaugeField& SigmaTerm,
const GaugeField& iLambda,
const GaugeField& Gauge) const{
SmearBase->derivative(SigmaTerm, iLambda, Gauge);
};
void BaseSmear(GaugeField& C,
const GaugeField& U) const{
SmearBase->smear(C, U);
};
void exponentiate_iQ(GaugeLinkField& e_iQ,
const GaugeLinkField& iQ) const{
// Put this outside
// only valid for SU(3) matrices
// only one Lorentz direction at a time
// notice that it actually computes
// exp ( input matrix )
// the i sign is coming from outside
// input matrix is anti-hermitian NOT hermitian
GridBase *grid = iQ._grid;
GaugeLinkField unity(grid);
unity=1.0;
GaugeLinkField iQ2(grid), iQ3(grid);
LatticeComplex u(grid), w(grid);
LatticeComplex f0(grid), f1(grid), f2(grid);
iQ2 = iQ * iQ;
iQ3 = iQ * iQ2;
set_uw(u, w, iQ2, iQ3);
set_fj(f0, f1, f2, u, w);
e_iQ = f0*unity + timesMinusI(f1) * iQ - f2 * iQ2;
};
void set_uw(LatticeComplex& u, LatticeComplex& w,
GaugeLinkField& iQ2, GaugeLinkField& iQ3) const{
Complex one_over_three = 1.0/3.0;
Complex one_over_two = 1.0/2.0;
GridBase *grid = u._grid;
LatticeComplex c0(grid), c1(grid), tmp(grid), c0max(grid), theta(grid);
// sign in c0 from the conventions on the Ta
c0 = - real(timesMinusI(trace(iQ3))) * one_over_three; //temporary hack
c1 = - real(trace(iQ2)) * one_over_two;
//Cayley Hamilton checks to machine precision, tested
tmp = c1 * one_over_three;
c0max = 2.0 * pow(tmp, 1.5);
theta = acos(c0/c0max)*one_over_three; // divide by three here, now leave as it is
u = sqrt(tmp) * cos( theta );
w = sqrt(c1) * sin( theta );
}
void set_fj(LatticeComplex& f0, LatticeComplex& f1, LatticeComplex& f2,
const LatticeComplex& u, const LatticeComplex& w) const{
GridBase *grid = u._grid;
LatticeComplex xi0(grid), u2(grid), w2(grid), cosw(grid);
LatticeComplex fden(grid);
LatticeComplex h0(grid), h1(grid), h2(grid);
LatticeComplex e2iu(grid), emiu(grid), ixi0(grid), qt(grid);
LatticeComplex unity(grid);
unity = 1.0;
xi0 = func_xi0(w);
u2 = u * u;
w2 = w * w;
cosw = cos(w);
ixi0 = timesI(xi0);
emiu = cos(u) - timesI(sin(u));
e2iu = cos(2.0*u) + timesI(sin(2.0*u));
h0 = e2iu * (u2 - w2) + emiu * ( (8.0*u2*cosw) + (2.0*u*(3.0*u2 + w2)*ixi0));
h1 = e2iu * (2.0 * u) - emiu * ( (2.0*u*cosw) - (3.0*u2-w2)*ixi0);
h2 = e2iu - emiu * ( cosw + (3.0*u)*ixi0);
fden = unity/(9.0*u2 - w2);// reals
f0 = h0 * fden;
f1 = h1 * fden;
f2 = h2 * fden;
}
LatticeComplex func_xi0(const LatticeComplex& w) const{
// Define a function to do the check
//if( w < 1e-4 ) std::cout << GridLogWarning<< "[Smear_stout] w too small: "<< w <<"\n";
return sin(w)/w;
}
LatticeComplex func_xi1(const LatticeComplex& w) const{
// Define a function to do the check
//if( w < 1e-4 ) std::cout << GridLogWarning << "[Smear_stout] w too small: "<< w <<"\n";
return cos(w)/(w*w) - sin(w)/(w*w*w);
}
};
}
}
#endif