1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-06-21 09:12:03 +01:00
Files
Grid/Grid/algorithms/multigrid/GeneralCoarsenedMatrix.h
Peter Boyle 639cc6f73a better support for multiRHS coarse space
Still to add restriction of domain of last loop to interior of padded cell (expect about 4.5x on test volume on Crusher)
2023-11-23 18:16:26 -05:00

456 lines
17 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/GeneralCoarsenedMatrix.h
Copyright (C) 2015
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#pragma once
#include <Grid/qcd/QCD.h> // needed for Dagger(Yes|No), Inverse(Yes|No)
#include <Grid/lattice/PaddedCell.h>
#include <Grid/stencil/GeneralLocalStencil.h>
NAMESPACE_BEGIN(Grid);
// Fine Object == (per site) type of fine field
// nbasis == number of deflation vectors
template<class Fobj,class CComplex,int nbasis>
class GeneralCoarsenedMatrix : public SparseMatrixBase<Lattice<iVector<CComplex,nbasis > > > {
public:
typedef GeneralCoarsenedMatrix<Fobj,CComplex,nbasis> GeneralCoarseOp;
typedef iVector<CComplex,nbasis > siteVector;
typedef iMatrix<CComplex,nbasis > siteMatrix;
typedef Lattice<iScalar<CComplex> > CoarseComplexField;
typedef Lattice<siteVector> CoarseVector;
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
typedef iMatrix<CComplex,nbasis > Cobj;
typedef iVector<CComplex,nbasis > Cvec;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
typedef CoarseVector Field;
////////////////////
// Data members
////////////////////
int hermitian;
GridBase * _FineGrid;
GridCartesian * _CoarseGrid;
NonLocalStencilGeometry &geom;
PaddedCell Cell;
GeneralLocalStencil Stencil;
std::vector<CoarseMatrix> _A;
std::vector<CoarseMatrix> _Adag;
std::vector<CoarseVector> MultTemporaries;
///////////////////////
// Interface
///////////////////////
GridBase * Grid(void) { return _CoarseGrid; }; // this is all the linalg routines need to know
GridBase * FineGrid(void) { return _FineGrid; }; // this is all the linalg routines need to know
GridCartesian * CoarseGrid(void) { return _CoarseGrid; }; // this is all the linalg routines need to know
void ShiftMatrix(RealD shift)
{
int Nd=_FineGrid->Nd();
Coordinate zero_shift(Nd,0);
for(int p=0;p<geom.npoint;p++){
if ( zero_shift==geom.shifts[p] ) {
_A[p] = _A[p]+shift;
_Adag[p] = _Adag[p]+shift;
}
}
}
void ProjectNearestNeighbour(RealD shift, GeneralCoarseOp &CopyMe)
{
int nfound=0;
std::cout << GridLogMessage <<"GeneralCoarsenedMatrix::ProjectNearestNeighbour "<< CopyMe._A[0].Grid()<<std::endl;
for(int p=0;p<geom.npoint;p++){
for(int pp=0;pp<CopyMe.geom.npoint;pp++){
// Search for the same relative shift
// Avoids brutal handling of Grid pointers
if ( CopyMe.geom.shifts[pp]==geom.shifts[p] ) {
_A[p] = CopyMe.Cell.Extract(CopyMe._A[pp]);
_Adag[p] = CopyMe.Cell.Extract(CopyMe._Adag[pp]);
nfound++;
}
}
}
assert(nfound==geom.npoint);
ExchangeCoarseLinks();
}
GeneralCoarsenedMatrix(NonLocalStencilGeometry &_geom,GridBase *FineGrid, GridCartesian * CoarseGrid)
: geom(_geom),
_FineGrid(FineGrid),
_CoarseGrid(CoarseGrid),
hermitian(1),
Cell(_geom.Depth(),_CoarseGrid),
Stencil(Cell.grids.back(),geom.shifts)
{
{
int npoint = _geom.npoint;
}
_A.resize(geom.npoint,CoarseGrid);
_Adag.resize(geom.npoint,CoarseGrid);
}
void M (const CoarseVector &in, CoarseVector &out)
{
Mult(_A,in,out);
}
void Mdag (const CoarseVector &in, CoarseVector &out)
{
if ( hermitian ) M(in,out);
else Mult(_Adag,in,out);
}
void Mult (std::vector<CoarseMatrix> &A,const CoarseVector &in, CoarseVector &out)
{
RealD tviews=0; RealD ttot=0; RealD tmult=0; RealD texch=0; RealD text=0; RealD ttemps=0; RealD tcopy=0;
RealD tmult2=0;
ttot=-usecond();
conformable(CoarseGrid(),in.Grid());
conformable(in.Grid(),out.Grid());
out.Checkerboard() = in.Checkerboard();
CoarseVector tin=in;
texch-=usecond();
CoarseVector pin = Cell.ExchangePeriodic(tin);
texch+=usecond();
CoarseVector pout(pin.Grid());
int npoint = geom.npoint;
typedef LatticeView<Cobj> Aview;
typedef LatticeView<Cvec> Vview;
const int Nsimd = CComplex::Nsimd();
int64_t osites=pin.Grid()->oSites();
RealD flops = 1.0* npoint * nbasis * nbasis * 8.0 * osites * CComplex::Nsimd();
RealD bytes = 1.0*osites*sizeof(siteMatrix)*npoint
+ 2.0*osites*sizeof(siteVector)*npoint;
{
tviews-=usecond();
autoView( in_v , pin, AcceleratorRead);
autoView( out_v , pout, AcceleratorWriteDiscard);
autoView( Stencil_v , Stencil, AcceleratorRead);
tviews+=usecond();
// Static and prereserve to keep UVM region live and not resized across multiple calls
ttemps-=usecond();
MultTemporaries.resize(npoint,pin.Grid());
ttemps+=usecond();
std::vector<Aview> AcceleratorViewContainer_h;
std::vector<Vview> AcceleratorVecViewContainer_h;
tviews-=usecond();
for(int p=0;p<npoint;p++) {
AcceleratorViewContainer_h.push_back( A[p].View(AcceleratorRead));
AcceleratorVecViewContainer_h.push_back(MultTemporaries[p].View(AcceleratorWrite));
}
tviews+=usecond();
static deviceVector<Aview> AcceleratorViewContainer; AcceleratorViewContainer.resize(npoint);
static deviceVector<Vview> AcceleratorVecViewContainer; AcceleratorVecViewContainer.resize(npoint);
auto Aview_p = &AcceleratorViewContainer[0];
auto Vview_p = &AcceleratorVecViewContainer[0];
tcopy-=usecond();
acceleratorCopyToDevice(&AcceleratorViewContainer_h[0],&AcceleratorViewContainer[0],npoint *sizeof(Aview));
acceleratorCopyToDevice(&AcceleratorVecViewContainer_h[0],&AcceleratorVecViewContainer[0],npoint *sizeof(Vview));
tcopy+=usecond();
tmult-=usecond();
accelerator_for(spb, osites*nbasis*npoint, Nsimd, {
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
int32_t ss = spb/(nbasis*npoint);
int32_t bp = spb%(nbasis*npoint);
int32_t point= bp/nbasis;
int32_t b = bp%nbasis;
auto SE = Stencil_v.GetEntry(point,ss);
auto nbr = coalescedReadGeneralPermute(in_v[SE->_offset],SE->_permute,Nd);
auto res = coalescedRead(Aview_p[point][ss](0,b))*nbr(0);
for(int bb=1;bb<nbasis;bb++) {
res = res + coalescedRead(Aview_p[point][ss](bb,b))*nbr(bb);
}
coalescedWrite(Vview_p[point][ss](b),res);
});
tmult2-=usecond();
accelerator_for(sb, osites*nbasis, Nsimd, {
int ss = sb/nbasis;
int b = sb%nbasis;
auto res = coalescedRead(Vview_p[0][ss](b));
for(int point=1;point<npoint;point++){
res = res + coalescedRead(Vview_p[point][ss](b));
}
coalescedWrite(out_v[ss](b),res);
});
tmult2+=usecond();
tmult+=usecond();
for(int p=0;p<npoint;p++) {
AcceleratorViewContainer_h[p].ViewClose();
AcceleratorVecViewContainer_h[p].ViewClose();
}
}
text-=usecond();
out = Cell.Extract(pout);
text+=usecond();
ttot+=usecond();
std::cout << GridLogPerformance<<"Coarse Mult Aviews "<<tviews<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult exch "<<texch<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult mult "<<tmult<<" us"<<std::endl;
std::cout << GridLogPerformance<<" of which mult2 "<<tmult2<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult ext "<<text<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult temps "<<ttemps<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult copy "<<tcopy<<" us"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Mult tot "<<ttot<<" us"<<std::endl;
// std::cout << GridLogPerformance<<std::endl;
std::cout << GridLogPerformance<<"Coarse Kernel flop/s "<< flops/tmult<<" mflop/s"<<std::endl;
std::cout << GridLogPerformance<<"Coarse Kernel bytes/s"<< bytes/tmult<<" MB/s"<<std::endl;
std::cout << GridLogPerformance<<"Coarse overall flops/s "<< flops/ttot<<" mflop/s"<<std::endl;
std::cout << GridLogPerformance<<"Coarse total bytes "<< bytes/1e6<<" MB"<<std::endl;
};
void PopulateAdag(void)
{
for(int64_t bidx=0;bidx<CoarseGrid()->gSites() ;bidx++){
Coordinate bcoor;
CoarseGrid()->GlobalIndexToGlobalCoor(bidx,bcoor);
for(int p=0;p<geom.npoint;p++){
Coordinate scoor = bcoor;
for(int mu=0;mu<bcoor.size();mu++){
int L = CoarseGrid()->GlobalDimensions()[mu];
scoor[mu] = (bcoor[mu] - geom.shifts[p][mu] + L) % L; // Modulo arithmetic
}
// Flip to poke/peekLocalSite and not too bad
auto link = peekSite(_A[p],scoor);
int pp = geom.Reverse(p);
pokeSite(adj(link),_Adag[pp],bcoor);
}
}
}
/////////////////////////////////////////////////////////////
//
// A) Only reduced flops option is to use a padded cell of depth 4
// and apply MpcDagMpc in the padded cell.
//
// Makes for ONE application of MpcDagMpc per vector instead of 30 or 80.
// With the effective cell size around (B+8)^4 perhaps 12^4/4^4 ratio
// Cost is 81x more, same as stencil size.
//
// But: can eliminate comms and do as local dirichlet.
//
// Local exchange gauge field once.
// Apply to all vectors, local only computation.
// Must exchange ghost subcells in reverse process of PaddedCell to take inner products
//
// B) Can reduce cost: pad by 1, apply Deo (4^4+6^4+8^4+8^4 )/ (4x 4^4)
// pad by 2, apply Doe
// pad by 3, apply Deo
// then break out 8x directions; cost is ~10x MpcDagMpc per vector
//
// => almost factor of 10 in setup cost, excluding data rearrangement
//
// Intermediates -- ignore the corner terms, leave approximate and force Hermitian
// Intermediates -- pad by 2 and apply 1+8+24 = 33 times.
/////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////
// BFM HDCG style approach: Solve a system of equations to get Aij
//////////////////////////////////////////////////////////
/*
* Here, k,l index which possible shift within the 3^Nd "ball" connected by MdagM.
*
* conj(phases[block]) proj[k][ block*Nvec+j ] = \sum_ball e^{i q_k . delta} < phi_{block,j} | MdagM | phi_{(block+delta),i} >
* = \sum_ball e^{iqk.delta} A_ji
*
* Must invert matrix M_k,l = e^[i q_k . delta_l]
*
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
*/
void CoarsenOperator(LinearOperatorBase<Lattice<Fobj> > &linop,
Aggregation<Fobj,CComplex,nbasis> & Subspace)
{
std::cout << GridLogMessage<< "GeneralCoarsenMatrix "<< std::endl;
GridBase *grid = FineGrid();
RealD tproj=0.0;
RealD teigen=0.0;
RealD tmat=0.0;
RealD tphase=0.0;
RealD tinv=0.0;
/////////////////////////////////////////////////////////////
// Orthogonalise the subblocks over the basis
/////////////////////////////////////////////////////////////
CoarseScalar InnerProd(CoarseGrid());
blockOrthogonalise(InnerProd,Subspace.subspace);
const int npoint = geom.npoint;
Coordinate clatt = CoarseGrid()->GlobalDimensions();
int Nd = CoarseGrid()->Nd();
/*
* Here, k,l index which possible momentum/shift within the N-points connected by MdagM.
* Matrix index i is mapped to this shift via
* geom.shifts[i]
*
* conj(pha[block]) proj[k (which mom)][j (basis vec cpt)][block]
* = \sum_{l in ball} e^{i q_k . delta_l} < phi_{block,j} | MdagM | phi_{(block+delta_l),i} >
* = \sum_{l in ball} e^{iqk.delta_l} A_ji^{b.b+l}
* = M_{kl} A_ji^{b.b+l}
*
* Must assemble and invert matrix M_k,l = e^[i q_k . delta_l]
*
* Where q_k = delta_k . (2*M_PI/global_nb[mu])
*
* Then A{ji}^{b,b+l} = M^{-1}_{lm} ComputeProj_{m,b,i,j}
*/
teigen-=usecond();
Eigen::MatrixXcd Mkl = Eigen::MatrixXcd::Zero(npoint,npoint);
Eigen::MatrixXcd invMkl = Eigen::MatrixXcd::Zero(npoint,npoint);
ComplexD ci(0.0,1.0);
for(int k=0;k<npoint;k++){ // Loop over momenta
for(int l=0;l<npoint;l++){ // Loop over nbr relative
ComplexD phase(0.0,0.0);
for(int mu=0;mu<Nd;mu++){
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
phase=phase+TwoPiL*geom.shifts[k][mu]*geom.shifts[l][mu];
}
phase=exp(phase*ci);
Mkl(k,l) = phase;
}
}
invMkl = Mkl.inverse();
teigen+=usecond();
///////////////////////////////////////////////////////////////////////
// Now compute the matrix elements of linop between the orthonormal
// set of vectors.
///////////////////////////////////////////////////////////////////////
FineField phaV(grid); // Phased block basis vector
FineField MphaV(grid);// Matrix applied
CoarseVector coarseInner(CoarseGrid());
std::vector<CoarseVector> ComputeProj(npoint,CoarseGrid());
std::vector<CoarseVector> FT(npoint,CoarseGrid());
for(int i=0;i<nbasis;i++){// Loop over basis vectors
std::cout << GridLogMessage<< "CoarsenMatrixColoured vec "<<i<<"/"<<nbasis<< std::endl;
for(int p=0;p<npoint;p++){ // Loop over momenta in npoint
/////////////////////////////////////////////////////
// Stick a phase on every block
/////////////////////////////////////////////////////
tphase-=usecond();
CoarseComplexField coor(CoarseGrid());
CoarseComplexField pha(CoarseGrid()); pha=Zero();
for(int mu=0;mu<Nd;mu++){
LatticeCoordinate(coor,mu);
RealD TwoPiL = M_PI * 2.0/ clatt[mu];
pha = pha + (TwoPiL * geom.shifts[p][mu]) * coor;
}
pha =exp(pha*ci);
phaV=Zero();
blockZAXPY(phaV,pha,Subspace.subspace[i],phaV);
tphase+=usecond();
/////////////////////////////////////////////////////////////////////
// Multiple phased subspace vector by matrix and project to subspace
// Remove local bulk phase to leave relative phases
/////////////////////////////////////////////////////////////////////
tmat-=usecond();
linop.Op(phaV,MphaV);
tmat+=usecond();
tproj-=usecond();
blockProject(coarseInner,MphaV,Subspace.subspace);
coarseInner = conjugate(pha) * coarseInner;
ComputeProj[p] = coarseInner;
tproj+=usecond();
}
tinv-=usecond();
for(int k=0;k<npoint;k++){
FT[k] = Zero();
for(int l=0;l<npoint;l++){
FT[k]= FT[k]+ invMkl(l,k)*ComputeProj[l];
}
int osites=CoarseGrid()->oSites();
autoView( A_v , _A[k], AcceleratorWrite);
autoView( FT_v , FT[k], AcceleratorRead);
accelerator_for(sss, osites, 1, {
for(int j=0;j<nbasis;j++){
A_v[sss](i,j) = FT_v[sss](j);
}
});
}
tinv+=usecond();
}
for(int p=0;p<geom.npoint;p++){
Coordinate coor({0,0,0,0,0});
auto sval = peekSite(_A[p],coor);
}
// Only needed if nonhermitian
if ( ! hermitian ) {
std::cout << GridLogMessage<<"PopulateAdag "<<std::endl;
PopulateAdag();
}
// Need to write something to populate Adag from A
ExchangeCoarseLinks();
std::cout << GridLogMessage<<"CoarsenOperator eigen "<<teigen<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator phase "<<tphase<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator mat "<<tmat <<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator proj "<<tproj<<" us"<<std::endl;
std::cout << GridLogMessage<<"CoarsenOperator inv "<<tinv<<" us"<<std::endl;
}
void ExchangeCoarseLinks(void){
for(int p=0;p<geom.npoint;p++){
_A[p] = Cell.ExchangePeriodic(_A[p]);
_Adag[p]= Cell.ExchangePeriodic(_Adag[p]);
}
}
virtual void Mdiag (const Field &in, Field &out){ assert(0);};
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);};
virtual void MdirAll (const Field &in, std::vector<Field> &out){assert(0);};
};
NAMESPACE_END(Grid);