mirror of
https://github.com/paboyle/Grid.git
synced 2025-06-14 22:07:05 +01:00
374 lines
12 KiB
C++
374 lines
12 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: ./lib/algorithms/iterative/ConjugateGradient.h
|
|
|
|
Copyright (C) 2015
|
|
|
|
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
Author: paboyle <paboyle@ph.ed.ac.uk>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution
|
|
directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
#ifndef GRID_CONJUGATE_GRADIENT_H
|
|
#define GRID_CONJUGATE_GRADIENT_H
|
|
|
|
NAMESPACE_BEGIN(Grid);
|
|
|
|
/////////////////////////////////////////////////////////////
|
|
// Base classes for iterative processes based on operators
|
|
// single input vec, single output vec.
|
|
/////////////////////////////////////////////////////////////
|
|
|
|
|
|
template <class Field>
|
|
class ConjugateGradient : public OperatorFunction<Field> {
|
|
public:
|
|
|
|
using OperatorFunction<Field>::operator();
|
|
|
|
bool ErrorOnNoConverge; // throw an assert when the CG fails to converge.
|
|
// Defaults true.
|
|
RealD Tolerance;
|
|
Integer MaxIterations;
|
|
Integer IterationsToComplete; //Number of iterations the CG took to finish. Filled in upon completion
|
|
RealD TrueResidual;
|
|
|
|
ConjugateGradient(RealD tol, Integer maxit, bool err_on_no_conv = true)
|
|
: Tolerance(tol),
|
|
MaxIterations(maxit),
|
|
ErrorOnNoConverge(err_on_no_conv)
|
|
{};
|
|
|
|
virtual void LogIteration(int k,RealD a,RealD b){
|
|
// std::cout << "ConjugageGradient::LogIteration() "<<std::endl;
|
|
};
|
|
virtual void LogBegin(void){
|
|
std::cout << "ConjugageGradient::LogBegin() "<<std::endl;
|
|
};
|
|
|
|
void operator()(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi) {
|
|
|
|
this->LogBegin();
|
|
|
|
GRID_TRACE("ConjugateGradient");
|
|
GridStopWatch PreambleTimer;
|
|
GridStopWatch ConstructTimer;
|
|
GridStopWatch NormTimer;
|
|
GridStopWatch AssignTimer;
|
|
PreambleTimer.Start();
|
|
psi.Checkerboard() = src.Checkerboard();
|
|
|
|
conformable(psi, src);
|
|
|
|
RealD cp, c, a, d, b, ssq, qq;
|
|
//RealD b_pred;
|
|
|
|
// Was doing copies
|
|
ConstructTimer.Start();
|
|
Field p (src.Grid());
|
|
Field mmp(src.Grid());
|
|
Field r (src.Grid());
|
|
ConstructTimer.Stop();
|
|
|
|
// Initial residual computation & set up
|
|
NormTimer.Start();
|
|
ssq = norm2(src);
|
|
RealD guess = norm2(psi);
|
|
NormTimer.Stop();
|
|
assert(std::isnan(guess) == 0);
|
|
AssignTimer.Start();
|
|
if ( guess == 0.0 ) {
|
|
r = src;
|
|
p = r;
|
|
a = ssq;
|
|
} else {
|
|
Linop.HermOpAndNorm(psi, mmp, d, b);
|
|
r = src - mmp;
|
|
p = r;
|
|
a = norm2(p);
|
|
}
|
|
cp = a;
|
|
AssignTimer.Stop();
|
|
|
|
// Handle trivial case of zero src
|
|
if (ssq == 0.){
|
|
psi = Zero();
|
|
IterationsToComplete = 1;
|
|
TrueResidual = 0.;
|
|
return;
|
|
}
|
|
|
|
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: guess " << guess << std::endl;
|
|
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: src " << ssq << std::endl;
|
|
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: mp " << d << std::endl;
|
|
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: mmp " << b << std::endl;
|
|
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: cp,r " << cp << std::endl;
|
|
std::cout << GridLogIterative << std::setprecision(8) << "ConjugateGradient: p " << a << std::endl;
|
|
|
|
RealD rsq = Tolerance * Tolerance * ssq;
|
|
|
|
// Check if guess is really REALLY good :)
|
|
if (cp <= rsq) {
|
|
TrueResidual = std::sqrt(a/ssq);
|
|
std::cout << GridLogMessage << "ConjugateGradient guess is converged already " << std::endl;
|
|
IterationsToComplete = 0;
|
|
return;
|
|
}
|
|
|
|
std::cout << GridLogIterative << std::setprecision(8)
|
|
<< "ConjugateGradient: k=0 residual " << cp << " target " << rsq << std::endl;
|
|
|
|
PreambleTimer.Stop();
|
|
GridStopWatch LinalgTimer;
|
|
GridStopWatch InnerTimer;
|
|
GridStopWatch AxpyNormTimer;
|
|
GridStopWatch LinearCombTimer;
|
|
GridStopWatch MatrixTimer;
|
|
GridStopWatch SolverTimer;
|
|
|
|
RealD usecs = -usecond();
|
|
SolverTimer.Start();
|
|
int k;
|
|
for (k = 1; k <= MaxIterations; k++) {
|
|
|
|
GridStopWatch IterationTimer;
|
|
IterationTimer.Start();
|
|
c = cp;
|
|
|
|
MatrixTimer.Start();
|
|
Linop.HermOp(p, mmp);
|
|
MatrixTimer.Stop();
|
|
|
|
LinalgTimer.Start();
|
|
|
|
InnerTimer.Start();
|
|
ComplexD dc = innerProduct(p,mmp);
|
|
InnerTimer.Stop();
|
|
d = dc.real();
|
|
a = c / d;
|
|
|
|
AxpyNormTimer.Start();
|
|
cp = axpy_norm(r, -a, mmp, r);
|
|
AxpyNormTimer.Stop();
|
|
b = cp / c;
|
|
|
|
LinearCombTimer.Start();
|
|
{
|
|
autoView( psi_v , psi, AcceleratorWrite);
|
|
autoView( p_v , p, AcceleratorWrite);
|
|
autoView( r_v , r, AcceleratorWrite);
|
|
accelerator_for(ss,p_v.size(), Field::vector_object::Nsimd(),{
|
|
coalescedWrite(psi_v[ss], a * p_v(ss) + psi_v(ss));
|
|
coalescedWrite(p_v[ss] , b * p_v(ss) + r_v (ss));
|
|
});
|
|
}
|
|
LinearCombTimer.Stop();
|
|
LinalgTimer.Stop();
|
|
LogIteration(k,a,b);
|
|
|
|
IterationTimer.Stop();
|
|
if ( (k % 500) == 0 ) {
|
|
std::cout << GridLogMessage << "ConjugateGradient: Iteration " << k
|
|
<< " residual " << sqrt(cp/ssq) << " target " << Tolerance << std::endl;
|
|
} else {
|
|
std::cout << GridLogIterative << "ConjugateGradient: Iteration " << k
|
|
<< " residual " << sqrt(cp/ssq) << " target " << Tolerance << " took " << IterationTimer.Elapsed() << std::endl;
|
|
}
|
|
|
|
// Stopping condition
|
|
if (cp <= rsq) {
|
|
usecs +=usecond();
|
|
SolverTimer.Stop();
|
|
Linop.HermOpAndNorm(psi, mmp, d, qq);
|
|
p = mmp - src;
|
|
GridBase *grid = src.Grid();
|
|
RealD DwfFlops = (1452. )*grid->gSites()*4*k
|
|
+ (8+4+8+4+4)*12*grid->gSites()*k; // CG linear algebra
|
|
RealD srcnorm = std::sqrt(norm2(src));
|
|
RealD resnorm = std::sqrt(norm2(p));
|
|
RealD true_residual = resnorm / srcnorm;
|
|
std::cout << GridLogMessage << "ConjugateGradient Converged on iteration " << k
|
|
<< "\tComputed residual " << std::sqrt(cp / ssq)
|
|
<< "\tTrue residual " << true_residual
|
|
<< "\tTarget " << Tolerance << std::endl;
|
|
|
|
// std::cout << GridLogMessage << "\tPreamble " << PreambleTimer.Elapsed() <<std::endl;
|
|
std::cout << GridLogMessage << "\tSolver Elapsed " << SolverTimer.Elapsed() <<std::endl;
|
|
std::cout << GridLogPerformance << "Time breakdown "<<std::endl;
|
|
std::cout << GridLogPerformance << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
|
std::cout << GridLogPerformance << "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
|
std::cout << GridLogPerformance << "\t\tInner " << InnerTimer.Elapsed() <<std::endl;
|
|
std::cout << GridLogPerformance << "\t\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
|
|
std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
|
|
|
|
std::cout << GridLogDebug << "\tMobius flop rate " << DwfFlops/ usecs<< " Gflops " <<std::endl;
|
|
|
|
if (ErrorOnNoConverge) assert(true_residual / Tolerance < 10000.0);
|
|
|
|
IterationsToComplete = k;
|
|
TrueResidual = true_residual;
|
|
|
|
return;
|
|
}
|
|
}
|
|
// Failed. Calculate true residual before giving up
|
|
// Linop.HermOpAndNorm(psi, mmp, d, qq);
|
|
// p = mmp - src;
|
|
//TrueResidual = sqrt(norm2(p)/ssq);
|
|
// TrueResidual = 1;
|
|
|
|
std::cout << GridLogMessage << "ConjugateGradient did NOT converge "<<k<<" / "<< MaxIterations
|
|
<<" residual "<< std::sqrt(cp / ssq)<< std::endl;
|
|
SolverTimer.Stop();
|
|
std::cout << GridLogMessage << "\tPreamble " << PreambleTimer.Elapsed() <<std::endl;
|
|
std::cout << GridLogMessage << "\tConstruct " << ConstructTimer.Elapsed() <<std::endl;
|
|
std::cout << GridLogMessage << "\tNorm " << NormTimer.Elapsed() <<std::endl;
|
|
std::cout << GridLogMessage << "\tAssign " << AssignTimer.Elapsed() <<std::endl;
|
|
std::cout << GridLogMessage << "\tSolver " << SolverTimer.Elapsed() <<std::endl;
|
|
std::cout << GridLogMessage << "Solver breakdown "<<std::endl;
|
|
std::cout << GridLogMessage << "\tMatrix " << MatrixTimer.Elapsed() <<std::endl;
|
|
std::cout << GridLogMessage<< "\tLinalg " << LinalgTimer.Elapsed() <<std::endl;
|
|
std::cout << GridLogPerformance << "\t\tInner " << InnerTimer.Elapsed() <<std::endl;
|
|
std::cout << GridLogPerformance << "\t\tAxpyNorm " << AxpyNormTimer.Elapsed() <<std::endl;
|
|
std::cout << GridLogPerformance << "\t\tLinearComb " << LinearCombTimer.Elapsed() <<std::endl;
|
|
|
|
if (ErrorOnNoConverge) assert(0);
|
|
IterationsToComplete = k;
|
|
|
|
}
|
|
};
|
|
|
|
|
|
template <class Field>
|
|
class ConjugateGradientPolynomial : public ConjugateGradient<Field> {
|
|
public:
|
|
// Optionally record the CG polynomial
|
|
std::vector<double> ak;
|
|
std::vector<double> bk;
|
|
std::vector<double> poly_p;
|
|
std::vector<double> poly_r;
|
|
std::vector<double> poly_Ap;
|
|
std::vector<double> polynomial;
|
|
|
|
public:
|
|
ConjugateGradientPolynomial(RealD tol, Integer maxit, bool err_on_no_conv = true)
|
|
: ConjugateGradient<Field>(tol,maxit,err_on_no_conv)
|
|
{ };
|
|
void PolyHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
|
|
{
|
|
Field tmp(src.Grid());
|
|
Field AtoN(src.Grid());
|
|
AtoN = src;
|
|
psi=AtoN*polynomial[0];
|
|
for(int n=1;n<polynomial.size();n++){
|
|
tmp = AtoN;
|
|
Linop.HermOp(tmp,AtoN);
|
|
psi = psi + polynomial[n]*AtoN;
|
|
}
|
|
}
|
|
void CGsequenceHermOp(LinearOperatorBase<Field> &Linop, const Field &src, Field &x)
|
|
{
|
|
Field Ap(src.Grid());
|
|
Field r(src.Grid());
|
|
Field p(src.Grid());
|
|
p=src;
|
|
r=src;
|
|
x=Zero();
|
|
x.Checkerboard()=src.Checkerboard();
|
|
for(int k=0;k<ak.size();k++){
|
|
x = x + ak[k]*p;
|
|
Linop.HermOp(p,Ap);
|
|
r = r - ak[k] * Ap;
|
|
p = r + bk[k] * p;
|
|
}
|
|
}
|
|
void Solve(LinearOperatorBase<Field> &Linop, const Field &src, Field &psi)
|
|
{
|
|
psi=Zero();
|
|
this->operator ()(Linop,src,psi);
|
|
}
|
|
virtual void LogBegin(void)
|
|
{
|
|
std::cout << "ConjugageGradientPolynomial::LogBegin() "<<std::endl;
|
|
ak.resize(0);
|
|
bk.resize(0);
|
|
polynomial.resize(0);
|
|
poly_Ap.resize(0);
|
|
poly_Ap.resize(0);
|
|
poly_p.resize(1);
|
|
poly_r.resize(1);
|
|
poly_p[0]=1.0;
|
|
poly_r[0]=1.0;
|
|
};
|
|
virtual void LogIteration(int k,RealD a,RealD b)
|
|
{
|
|
// With zero guess,
|
|
// p = r = src
|
|
//
|
|
// iterate:
|
|
// x = x + a p
|
|
// r = r - a A p
|
|
// p = r + b p
|
|
//
|
|
// [0]
|
|
// r = x
|
|
// p = x
|
|
// Ap=0
|
|
//
|
|
// [1]
|
|
// Ap = A x + 0 ==> shift poly P right by 1 and add 0.
|
|
// x = x + a p ==> add polynomials term by term
|
|
// r = r - a A p ==> add polynomials term by term
|
|
// p = r + b p ==> add polynomials term by term
|
|
//
|
|
std::cout << "ConjugageGradientPolynomial::LogIteration() "<<k<<std::endl;
|
|
ak.push_back(a);
|
|
bk.push_back(b);
|
|
// Ap= right_shift(p)
|
|
poly_Ap.resize(k+1);
|
|
poly_Ap[0]=0.0;
|
|
for(int i=0;i<k;i++){
|
|
poly_Ap[i+1]=poly_p[i];
|
|
}
|
|
|
|
// x = x + a p
|
|
polynomial.resize(k);
|
|
polynomial[k-1]=0.0;
|
|
for(int i=0;i<k;i++){
|
|
polynomial[i] = polynomial[i] + a * poly_p[i];
|
|
}
|
|
|
|
// r = r - a Ap
|
|
// p = r + b p
|
|
poly_r.resize(k+1);
|
|
poly_p.resize(k+1);
|
|
poly_r[k] = poly_p[k] = 0.0;
|
|
for(int i=0;i<k+1;i++){
|
|
poly_r[i] = poly_r[i] - a * poly_Ap[i];
|
|
poly_p[i] = poly_r[i] + b * poly_p[i];
|
|
}
|
|
}
|
|
};
|
|
|
|
NAMESPACE_END(Grid);
|
|
#endif
|