mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 07:55:35 +00:00
466 lines
17 KiB
C++
466 lines
17 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: ./lib/lattice/Lattice_ET.h
|
|
|
|
Copyright (C) 2015
|
|
|
|
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
Author: neo <cossu@post.kek.jp>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution
|
|
directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
#ifndef GRID_LATTICE_ET_H
|
|
#define GRID_LATTICE_ET_H
|
|
|
|
#include <iostream>
|
|
#include <tuple>
|
|
#include <typeinfo>
|
|
#include <vector>
|
|
|
|
NAMESPACE_BEGIN(Grid);
|
|
|
|
////////////////////////////////////////////////////
|
|
// Predicated where support
|
|
////////////////////////////////////////////////////
|
|
template <class iobj, class vobj, class robj>
|
|
inline vobj predicatedWhere(const iobj &predicate, const vobj &iftrue,
|
|
const robj &iffalse) {
|
|
typename std::remove_const<vobj>::type ret;
|
|
|
|
typedef typename vobj::scalar_object scalar_object;
|
|
typedef typename vobj::scalar_type scalar_type;
|
|
typedef typename vobj::vector_type vector_type;
|
|
|
|
const int Nsimd = vobj::vector_type::Nsimd();
|
|
|
|
std::vector<Integer> mask(Nsimd);
|
|
std::vector<scalar_object> truevals(Nsimd);
|
|
std::vector<scalar_object> falsevals(Nsimd);
|
|
|
|
extract(iftrue, truevals);
|
|
extract(iffalse, falsevals);
|
|
extract<vInteger, Integer>(TensorRemove(predicate), mask);
|
|
|
|
for (int s = 0; s < Nsimd; s++) {
|
|
if (mask[s]) falsevals[s] = truevals[s];
|
|
}
|
|
|
|
merge(ret, falsevals);
|
|
return ret;
|
|
}
|
|
|
|
////////////////////////////////////////////
|
|
// recursive evaluation of expressions; Could
|
|
// switch to generic approach with variadics, a la
|
|
// Antonin's Lat Sim but the repack to variadic with popped
|
|
// from tuple is hideous; C++14 introduces std::make_index_sequence for this
|
|
////////////////////////////////////////////
|
|
|
|
// leaf eval of lattice ; should enable if protect using traits
|
|
|
|
template <typename T>
|
|
using is_lattice = std::is_base_of<LatticeBase, T>;
|
|
|
|
template <typename T>
|
|
using is_lattice_expr = std::is_base_of<LatticeExpressionBase, T>;
|
|
|
|
template <typename T> using is_lattice_expr = std::is_base_of<LatticeExpressionBase,T >;
|
|
|
|
//Specialization of getVectorType for lattices
|
|
template<typename T>
|
|
struct getVectorType<Lattice<T> >{
|
|
typedef typename Lattice<T>::vector_object type;
|
|
};
|
|
|
|
template<class sobj>
|
|
inline sobj eval(const unsigned int ss, const sobj &arg)
|
|
{
|
|
return arg;
|
|
}
|
|
template <class lobj>
|
|
inline const lobj &eval(const unsigned int ss, const Lattice<lobj> &arg) {
|
|
return arg._odata[ss];
|
|
}
|
|
|
|
// handle nodes in syntax tree
|
|
template <typename Op, typename T1>
|
|
auto inline eval(
|
|
const unsigned int ss,
|
|
const LatticeUnaryExpression<Op, T1> &expr) // eval one operand
|
|
-> decltype(expr.first.func(eval(ss, std::get<0>(expr.second)))) {
|
|
return expr.first.func(eval(ss, std::get<0>(expr.second)));
|
|
}
|
|
|
|
template <typename Op, typename T1, typename T2>
|
|
auto inline eval(
|
|
const unsigned int ss,
|
|
const LatticeBinaryExpression<Op, T1, T2> &expr) // eval two operands
|
|
-> decltype(expr.first.func(eval(ss, std::get<0>(expr.second)),
|
|
eval(ss, std::get<1>(expr.second)))) {
|
|
return expr.first.func(eval(ss, std::get<0>(expr.second)),
|
|
eval(ss, std::get<1>(expr.second)));
|
|
}
|
|
|
|
template <typename Op, typename T1, typename T2, typename T3>
|
|
auto inline eval(const unsigned int ss,
|
|
const LatticeTrinaryExpression<Op, T1, T2, T3>
|
|
&expr) // eval three operands
|
|
-> decltype(expr.first.func(eval(ss, std::get<0>(expr.second)),
|
|
eval(ss, std::get<1>(expr.second)),
|
|
eval(ss, std::get<2>(expr.second)))) {
|
|
return expr.first.func(eval(ss, std::get<0>(expr.second)),
|
|
eval(ss, std::get<1>(expr.second)),
|
|
eval(ss, std::get<2>(expr.second)));
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// Obtain the grid from an expression, ensuring conformable. This must follow a
|
|
// tree recursion
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <class T1,
|
|
typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
|
|
inline void GridFromExpression(GridBase *&grid, const T1 &lat) // Lattice leaf
|
|
{
|
|
if (grid) {
|
|
conformable(grid, lat._grid);
|
|
}
|
|
grid = lat._grid;
|
|
}
|
|
template <class T1,
|
|
typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
|
|
inline void GridFromExpression(GridBase *&grid,
|
|
const T1 ¬lat) // non-lattice leaf
|
|
{}
|
|
template <typename Op, typename T1>
|
|
inline void GridFromExpression(GridBase *&grid,
|
|
const LatticeUnaryExpression<Op, T1> &expr) {
|
|
GridFromExpression(grid, std::get<0>(expr.second)); // recurse
|
|
}
|
|
|
|
template <typename Op, typename T1, typename T2>
|
|
inline void GridFromExpression(
|
|
GridBase *&grid, const LatticeBinaryExpression<Op, T1, T2> &expr) {
|
|
GridFromExpression(grid, std::get<0>(expr.second)); // recurse
|
|
GridFromExpression(grid, std::get<1>(expr.second));
|
|
}
|
|
template <typename Op, typename T1, typename T2, typename T3>
|
|
inline void GridFromExpression(
|
|
GridBase *&grid, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr) {
|
|
GridFromExpression(grid, std::get<0>(expr.second)); // recurse
|
|
GridFromExpression(grid, std::get<1>(expr.second));
|
|
GridFromExpression(grid, std::get<2>(expr.second));
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// Obtain the CB from an expression, ensuring conformable. This must follow a
|
|
// tree recursion
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <class T1,
|
|
typename std::enable_if<is_lattice<T1>::value, T1>::type * = nullptr>
|
|
inline void CBFromExpression(int &cb, const T1 &lat) // Lattice leaf
|
|
{
|
|
if ((cb == Odd) || (cb == Even)) {
|
|
assert(cb == lat.checkerboard);
|
|
}
|
|
cb = lat.checkerboard;
|
|
// std::cout<<GridLogMessage<<"Lattice leaf cb "<<cb<<std::endl;
|
|
}
|
|
template <class T1,
|
|
typename std::enable_if<!is_lattice<T1>::value, T1>::type * = nullptr>
|
|
inline void CBFromExpression(int &cb, const T1 ¬lat) // non-lattice leaf
|
|
{
|
|
// std::cout<<GridLogMessage<<"Non lattice leaf cb"<<cb<<std::endl;
|
|
}
|
|
template <typename Op, typename T1>
|
|
inline void CBFromExpression(int &cb,
|
|
const LatticeUnaryExpression<Op, T1> &expr) {
|
|
CBFromExpression(cb, std::get<0>(expr.second)); // recurse
|
|
// std::cout<<GridLogMessage<<"Unary node cb "<<cb<<std::endl;
|
|
}
|
|
|
|
template <typename Op, typename T1, typename T2>
|
|
inline void CBFromExpression(int &cb,
|
|
const LatticeBinaryExpression<Op, T1, T2> &expr) {
|
|
CBFromExpression(cb, std::get<0>(expr.second)); // recurse
|
|
CBFromExpression(cb, std::get<1>(expr.second));
|
|
// std::cout<<GridLogMessage<<"Binary node cb "<<cb<<std::endl;
|
|
}
|
|
template <typename Op, typename T1, typename T2, typename T3>
|
|
inline void CBFromExpression(
|
|
int &cb, const LatticeTrinaryExpression<Op, T1, T2, T3> &expr) {
|
|
CBFromExpression(cb, std::get<0>(expr.second)); // recurse
|
|
CBFromExpression(cb, std::get<1>(expr.second));
|
|
CBFromExpression(cb, std::get<2>(expr.second));
|
|
// std::cout<<GridLogMessage<<"Trinary node cb "<<cb<<std::endl;
|
|
}
|
|
|
|
////////////////////////////////////////////
|
|
// Unary operators and funcs
|
|
////////////////////////////////////////////
|
|
#define GridUnopClass(name, ret) \
|
|
template <class arg> \
|
|
struct name { \
|
|
static auto inline func(const arg a) -> decltype(ret) { return ret; } \
|
|
};
|
|
|
|
GridUnopClass(UnarySub, -a);
|
|
GridUnopClass(UnaryNot, Not(a));
|
|
GridUnopClass(UnaryAdj, adj(a));
|
|
GridUnopClass(UnaryConj, conjugate(a));
|
|
GridUnopClass(UnaryTrace, trace(a));
|
|
GridUnopClass(UnaryTranspose, transpose(a));
|
|
GridUnopClass(UnaryTa, Ta(a));
|
|
GridUnopClass(UnaryProjectOnGroup, ProjectOnGroup(a));
|
|
GridUnopClass(UnaryReal, real(a));
|
|
GridUnopClass(UnaryImag, imag(a));
|
|
GridUnopClass(UnaryToReal, toReal(a));
|
|
GridUnopClass(UnaryToComplex, toComplex(a));
|
|
GridUnopClass(UnaryTimesI, timesI(a));
|
|
GridUnopClass(UnaryTimesMinusI, timesMinusI(a));
|
|
GridUnopClass(UnaryAbs, abs(a));
|
|
GridUnopClass(UnarySqrt, sqrt(a));
|
|
GridUnopClass(UnaryRsqrt, rsqrt(a));
|
|
GridUnopClass(UnarySin, sin(a));
|
|
GridUnopClass(UnaryCos, cos(a));
|
|
GridUnopClass(UnaryAsin, asin(a));
|
|
GridUnopClass(UnaryAcos, acos(a));
|
|
GridUnopClass(UnaryLog, log(a));
|
|
GridUnopClass(UnaryExp, exp(a));
|
|
|
|
////////////////////////////////////////////
|
|
// Binary operators
|
|
////////////////////////////////////////////
|
|
#define GridBinOpClass(name, combination) \
|
|
template <class left, class right> \
|
|
struct name { \
|
|
static auto inline func(const left &lhs, const right &rhs) \
|
|
-> decltype(combination) const { \
|
|
return combination; \
|
|
} \
|
|
}
|
|
GridBinOpClass(BinaryAdd, lhs + rhs);
|
|
GridBinOpClass(BinarySub, lhs - rhs);
|
|
GridBinOpClass(BinaryMul, lhs *rhs);
|
|
GridBinOpClass(BinaryDiv, lhs /rhs);
|
|
|
|
GridBinOpClass(BinaryAnd, lhs &rhs);
|
|
GridBinOpClass(BinaryOr, lhs | rhs);
|
|
GridBinOpClass(BinaryAndAnd, lhs &&rhs);
|
|
GridBinOpClass(BinaryOrOr, lhs || rhs);
|
|
|
|
////////////////////////////////////////////////////
|
|
// Trinary conditional op
|
|
////////////////////////////////////////////////////
|
|
#define GridTrinOpClass(name, combination) \
|
|
template <class predicate, class left, class right> \
|
|
struct name { \
|
|
static auto inline func(const predicate &pred, const left &lhs, \
|
|
const right &rhs) -> decltype(combination) const { \
|
|
return combination; \
|
|
} \
|
|
}
|
|
|
|
GridTrinOpClass(
|
|
TrinaryWhere,
|
|
(predicatedWhere<predicate, typename std::remove_reference<left>::type,
|
|
typename std::remove_reference<right>::type>(pred, lhs,
|
|
rhs)));
|
|
|
|
////////////////////////////////////////////
|
|
// Operator syntactical glue
|
|
////////////////////////////////////////////
|
|
|
|
#define GRID_UNOP(name) name<decltype(eval(0, arg))>
|
|
#define GRID_BINOP(name) name<decltype(eval(0, lhs)), decltype(eval(0, rhs))>
|
|
#define GRID_TRINOP(name) \
|
|
name<decltype(eval(0, pred)), decltype(eval(0, lhs)), decltype(eval(0, rhs))>
|
|
|
|
#define GRID_DEF_UNOP(op, name) \
|
|
template <typename T1, \
|
|
typename std::enable_if<is_lattice<T1>::value || \
|
|
is_lattice_expr<T1>::value, \
|
|
T1>::type * = nullptr> \
|
|
inline auto op(const T1 &arg) \
|
|
->decltype(LatticeUnaryExpression<GRID_UNOP(name), const T1 &>( \
|
|
std::make_pair(GRID_UNOP(name)(), std::forward_as_tuple(arg)))) { \
|
|
return LatticeUnaryExpression<GRID_UNOP(name), const T1 &>( \
|
|
std::make_pair(GRID_UNOP(name)(), std::forward_as_tuple(arg))); \
|
|
}
|
|
|
|
#define GRID_BINOP_LEFT(op, name) \
|
|
template <typename T1, typename T2, \
|
|
typename std::enable_if<is_lattice<T1>::value || \
|
|
is_lattice_expr<T1>::value, \
|
|
T1>::type * = nullptr> \
|
|
inline auto op(const T1 &lhs, const T2 &rhs) \
|
|
->decltype( \
|
|
LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>( \
|
|
std::make_pair(GRID_BINOP(name)(), \
|
|
std::forward_as_tuple(lhs, rhs)))) { \
|
|
return LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>( \
|
|
std::make_pair(GRID_BINOP(name)(), std::forward_as_tuple(lhs, rhs))); \
|
|
}
|
|
|
|
#define GRID_BINOP_RIGHT(op, name) \
|
|
template <typename T1, typename T2, \
|
|
typename std::enable_if<!is_lattice<T1>::value && \
|
|
!is_lattice_expr<T1>::value, \
|
|
T1>::type * = nullptr, \
|
|
typename std::enable_if<is_lattice<T2>::value || \
|
|
is_lattice_expr<T2>::value, \
|
|
T2>::type * = nullptr> \
|
|
inline auto op(const T1 &lhs, const T2 &rhs) \
|
|
->decltype( \
|
|
LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>( \
|
|
std::make_pair(GRID_BINOP(name)(), \
|
|
std::forward_as_tuple(lhs, rhs)))) { \
|
|
return LatticeBinaryExpression<GRID_BINOP(name), const T1 &, const T2 &>( \
|
|
std::make_pair(GRID_BINOP(name)(), std::forward_as_tuple(lhs, rhs))); \
|
|
}
|
|
|
|
#define GRID_DEF_BINOP(op, name) \
|
|
GRID_BINOP_LEFT(op, name); \
|
|
GRID_BINOP_RIGHT(op, name);
|
|
|
|
#define GRID_DEF_TRINOP(op, name) \
|
|
template <typename T1, typename T2, typename T3> \
|
|
inline auto op(const T1 &pred, const T2 &lhs, const T3 &rhs) \
|
|
->decltype( \
|
|
LatticeTrinaryExpression<GRID_TRINOP(name), const T1 &, const T2 &, \
|
|
const T3 &>(std::make_pair( \
|
|
GRID_TRINOP(name)(), std::forward_as_tuple(pred, lhs, rhs)))) { \
|
|
return LatticeTrinaryExpression<GRID_TRINOP(name), const T1 &, const T2 &, \
|
|
const T3 &>(std::make_pair( \
|
|
GRID_TRINOP(name)(), std::forward_as_tuple(pred, lhs, rhs))); \
|
|
}
|
|
////////////////////////
|
|
// Operator definitions
|
|
////////////////////////
|
|
|
|
GRID_DEF_UNOP(operator-, UnarySub);
|
|
GRID_DEF_UNOP(Not, UnaryNot);
|
|
GRID_DEF_UNOP(operator!, UnaryNot);
|
|
GRID_DEF_UNOP(adj, UnaryAdj);
|
|
GRID_DEF_UNOP(conjugate, UnaryConj);
|
|
GRID_DEF_UNOP(trace, UnaryTrace);
|
|
GRID_DEF_UNOP(transpose, UnaryTranspose);
|
|
GRID_DEF_UNOP(Ta, UnaryTa);
|
|
GRID_DEF_UNOP(ProjectOnGroup, UnaryProjectOnGroup);
|
|
GRID_DEF_UNOP(real, UnaryReal);
|
|
GRID_DEF_UNOP(imag, UnaryImag);
|
|
GRID_DEF_UNOP(toReal, UnaryToReal);
|
|
GRID_DEF_UNOP(toComplex, UnaryToComplex);
|
|
GRID_DEF_UNOP(timesI, UnaryTimesI);
|
|
GRID_DEF_UNOP(timesMinusI, UnaryTimesMinusI);
|
|
GRID_DEF_UNOP(abs, UnaryAbs); // abs overloaded in cmath C++98; DON'T do the
|
|
// abs-fabs-dabs-labs thing
|
|
GRID_DEF_UNOP(sqrt, UnarySqrt);
|
|
GRID_DEF_UNOP(rsqrt, UnaryRsqrt);
|
|
GRID_DEF_UNOP(sin, UnarySin);
|
|
GRID_DEF_UNOP(cos, UnaryCos);
|
|
GRID_DEF_UNOP(asin, UnaryAsin);
|
|
GRID_DEF_UNOP(acos, UnaryAcos);
|
|
GRID_DEF_UNOP(log, UnaryLog);
|
|
GRID_DEF_UNOP(exp, UnaryExp);
|
|
|
|
GRID_DEF_BINOP(operator+, BinaryAdd);
|
|
GRID_DEF_BINOP(operator-, BinarySub);
|
|
GRID_DEF_BINOP(operator*, BinaryMul);
|
|
GRID_DEF_BINOP(operator/, BinaryDiv);
|
|
|
|
GRID_DEF_BINOP(operator&, BinaryAnd);
|
|
GRID_DEF_BINOP(operator|, BinaryOr);
|
|
GRID_DEF_BINOP(operator&&, BinaryAndAnd);
|
|
GRID_DEF_BINOP(operator||, BinaryOrOr);
|
|
|
|
GRID_DEF_TRINOP(where, TrinaryWhere);
|
|
|
|
/////////////////////////////////////////////////////////////
|
|
// Closure convenience to force expression to evaluate
|
|
/////////////////////////////////////////////////////////////
|
|
template <class Op, class T1>
|
|
auto closure(const LatticeUnaryExpression<Op, T1> &expr)
|
|
-> Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second))))> {
|
|
Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second))))> ret(
|
|
expr);
|
|
return ret;
|
|
}
|
|
template <class Op, class T1, class T2>
|
|
auto closure(const LatticeBinaryExpression<Op, T1, T2> &expr)
|
|
-> Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)),
|
|
eval(0, std::get<1>(expr.second))))> {
|
|
Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)),
|
|
eval(0, std::get<1>(expr.second))))>
|
|
ret(expr);
|
|
return ret;
|
|
}
|
|
template <class Op, class T1, class T2, class T3>
|
|
auto closure(const LatticeTrinaryExpression<Op, T1, T2, T3> &expr)
|
|
-> Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)),
|
|
eval(0, std::get<1>(expr.second)),
|
|
eval(0, std::get<2>(expr.second))))> {
|
|
Lattice<decltype(expr.first.func(eval(0, std::get<0>(expr.second)),
|
|
eval(0, std::get<1>(expr.second)),
|
|
eval(0, std::get<2>(expr.second))))>
|
|
ret(expr);
|
|
return ret;
|
|
}
|
|
|
|
#undef GRID_UNOP
|
|
#undef GRID_BINOP
|
|
#undef GRID_TRINOP
|
|
|
|
#undef GRID_DEF_UNOP
|
|
#undef GRID_DEF_BINOP
|
|
#undef GRID_DEF_TRINOP
|
|
NAMESPACE_END(Grid);
|
|
|
|
#if 0
|
|
using namespace Grid;
|
|
|
|
int main(int argc,char **argv){
|
|
|
|
Lattice<double> v1(16);
|
|
Lattice<double> v2(16);
|
|
Lattice<double> v3(16);
|
|
|
|
BinaryAdd<double,double> tmp;
|
|
LatticeBinaryExpression<BinaryAdd<double,double>,Lattice<double> &,Lattice<double> &>
|
|
expr(std::make_pair(tmp,
|
|
std::forward_as_tuple(v1,v2)));
|
|
tmp.func(eval(0,v1),eval(0,v2));
|
|
|
|
auto var = v1+v2;
|
|
std::cout<<GridLogMessage<<typeid(var).name()<<std::endl;
|
|
|
|
v3=v1+v2;
|
|
v3=v1+v2+v1*v2;
|
|
};
|
|
|
|
void testit(Lattice<double> &v1,Lattice<double> &v2,Lattice<double> &v3)
|
|
{
|
|
v3=v1+v2+v1*v2;
|
|
}
|
|
#endif
|
|
|
|
#endif
|