1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 09:15:38 +01:00
Grid/Grid_simd.h

224 lines
8.6 KiB
C++

#ifndef GRID_SIMD_H
#define GRID_SIMD_H
////////////////////////////////////////////////////////////////////////
// Define scalar and vector floating point types
//
// Scalar: RealF, RealD, ComplexF, ComplexD
//
// Vector: vRealF, vRealD, vComplexF, vComplexD
//
// Vector types are arch dependent
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// SIMD Alignment controls
////////////////////////////////////////////////////////////
#ifdef HAVE_VAR_ATTRIBUTE_ALIGNED
#define ALIGN_DIRECTIVE(A) __attribute__ ((aligned(A)))
#else
#define ALIGN_DIRECTIVE(A) __declspec(align(A))
#endif
#ifdef SSE2
#include <pmmintrin.h>
#define SIMDalign ALIGN_DIRECTIVE(16)
#endif
#if defined(AVX1) || defined (AVX2)
#include <immintrin.h>
#define SIMDalign ALIGN_DIRECTIVE(32)
#endif
#ifdef AVX512
#include <immintrin.h>
#define SIMDalign ALIGN_DIRECTIVE(64)
#endif
namespace Grid {
typedef float RealF;
typedef double RealD;
typedef RealF Real;
typedef std::complex<RealF> ComplexF;
typedef std::complex<RealD> ComplexD;
typedef std::complex<Real> Complex;
inline RealF adj(const RealF & r){ return r; }
inline RealF conj(const RealF & r){ return r; }
inline ComplexD localInnerProduct(const ComplexD & l, const ComplexD & r) { return conj(l)*r; }
inline ComplexF localInnerProduct(const ComplexF & l, const ComplexF & r) { return conj(l)*r; }
inline RealD localInnerProduct(const RealD & l, const RealD & r) { return l*r; }
inline RealF localInnerProduct(const RealF & l, const RealF & r) { return l*r; }
////////////////////////////////////////////////////////////////////////////////
//Provide support functions for basic real and complex data types required by Grid
//Single and double precision versions. Should be able to template this once only.
////////////////////////////////////////////////////////////////////////////////
inline void mac (ComplexD * __restrict__ y,const ComplexD * __restrict__ a,const ComplexD *__restrict__ x){ *y = (*a) * (*x)+(*y); };
inline void mult(ComplexD * __restrict__ y,const ComplexD * __restrict__ l,const ComplexD *__restrict__ r){ *y = (*l) * (*r);}
inline void sub (ComplexD * __restrict__ y,const ComplexD * __restrict__ l,const ComplexD *__restrict__ r){ *y = (*l) - (*r);}
inline void add (ComplexD * __restrict__ y,const ComplexD * __restrict__ l,const ComplexD *__restrict__ r){ *y = (*l) + (*r);}
inline ComplexD adj(const ComplexD& r){ return(conj(r)); }
// conj already supported for complex
inline void mac (ComplexF * __restrict__ y,const ComplexF * __restrict__ a,const ComplexF *__restrict__ x){ *y = (*a) * (*x)+(*y); }
inline void mult(ComplexF * __restrict__ y,const ComplexF * __restrict__ l,const ComplexF *__restrict__ r){ *y = (*l) * (*r); }
inline void sub (ComplexF * __restrict__ y,const ComplexF * __restrict__ l,const ComplexF *__restrict__ r){ *y = (*l) - (*r); }
inline void add (ComplexF * __restrict__ y,const ComplexF * __restrict__ l,const ComplexF *__restrict__ r){ *y = (*l) + (*r); }
inline Complex adj(const Complex& r ){ return(conj(r)); }
//conj already supported for complex
inline void mac (RealD * __restrict__ y,const RealD * __restrict__ a,const RealD *__restrict__ x){ *y = (*a) * (*x)+(*y);}
inline void mult(RealD * __restrict__ y,const RealD * __restrict__ l,const RealD *__restrict__ r){ *y = (*l) * (*r);}
inline void sub (RealD * __restrict__ y,const RealD * __restrict__ l,const RealD *__restrict__ r){ *y = (*l) - (*r);}
inline void add (RealD * __restrict__ y,const RealD * __restrict__ l,const RealD *__restrict__ r){ *y = (*l) + (*r);}
inline RealD adj(const RealD & r){ return r; } // No-op for real
inline RealD conj(const RealD & r){ return r; }
inline void mac (RealF * __restrict__ y,const RealF * __restrict__ a,const RealF *__restrict__ x){ *y = (*a) * (*x)+(*y); }
inline void mult(RealF * __restrict__ y,const RealF * __restrict__ l,const RealF *__restrict__ r){ *y = (*l) * (*r); }
inline void sub (RealF * __restrict__ y,const RealF * __restrict__ l,const RealF *__restrict__ r){ *y = (*l) - (*r); }
inline void add (RealF * __restrict__ y,const RealF * __restrict__ l,const RealF *__restrict__ r){ *y = (*l) + (*r); }
class Zero{};
static Zero zero;
template<class itype> inline void ZeroIt(itype &arg){ arg=zero;};
template<> inline void ZeroIt(ComplexF &arg){ arg=0; };
template<> inline void ZeroIt(ComplexD &arg){ arg=0; };
template<> inline void ZeroIt(RealF &arg){ arg=0; };
template<> inline void ZeroIt(RealD &arg){ arg=0; };
#if defined (SSE2)
typedef __m128 fvec;
typedef __m128d dvec;
typedef __m128 cvec;
typedef __m128d zvec;
typedef __m128i ivec;
#endif
#if defined (AVX1) || defined (AVX2)
typedef __m256 fvec;
typedef __m256d dvec;
typedef __m256 cvec;
typedef __m256d zvec;
typedef __m256i ivec;
#endif
#if defined (AVX512)
typedef __m512 fvec;
typedef __m512d dvec;
typedef __m512 cvec;
typedef __m512d zvec;
typedef __m512i ivec;
#endif
#if defined (QPX)
typedef float fvec __attribute__ ((vector_size (16))); // QPX has same SIMD width irrespective of precision
typedef float cvec __attribute__ ((vector_size (16)));
typedef vector4double dvec;
typedef vector4double zvec;
#endif
#if defined (AVX1) || defined (AVX2) || defined (AVX512)
inline void v_prefetch0(int size, const char *ptr){
for(int i=0;i<size;i+=64){ // Define L1 linesize above// What about SSE?
_mm_prefetch(ptr+i+4096,_MM_HINT_T1);
_mm_prefetch(ptr+i+512,_MM_HINT_T0);
}
}
#else
inline void v_prefetch0(int size, const char *ptr){};
#endif
/////////////////////////////////////////////////////////////////
// Generic extract/merge/permute
/////////////////////////////////////////////////////////////////
template<class vsimd,class scalar>
inline void Gextract(vsimd &y,std::vector<scalar *> &extracted){
#if 1
// FIXME: bounce off stack is painful
// temporary hack while I figure out better way.
// There are intrinsics to do this work without the storage.
int Nsimd = extracted.size();
{
std::vector<scalar,alignedAllocator<scalar> > buf(Nsimd);
vstore(y,&buf[0]);
for(int i=0;i<Nsimd;i++){
*extracted[i] = buf[i];
extracted[i]++;
}
}
#else
int NSo = extracted.size();
int NSv = vsimd::Nsimd();
int sparse= NSv/NSo;
for(int i=0;i<NSv;i+=sparse){
}
#endif
};
template<class vsimd,class scalar>
inline void Gmerge(vsimd &y,std::vector<scalar *> &extracted){
#if 1
int Nsimd = extracted.size();
std::vector<scalar> buf(Nsimd);
for(int i=0;i<Nsimd;i++){
buf[i]=*extracted[i];
extracted[i]++;
}
vset(y,&buf[0]);
#else
#endif
};
//////////////////////////////////////////////////////////
// Permute
// Permute 0 every ABCDEFGH -> BA DC FE HG
// Permute 1 every ABCDEFGH -> CD AB GH EF
// Permute 2 every ABCDEFGH -> EFGH ABCD
// Permute 3 possible on longer iVector lengths (512bit = 8 double = 16 single)
// Permute 4 possible on half precision @512bit vectors.
//////////////////////////////////////////////////////////
template<class vsimd>
inline void Gpermute(vsimd &y,vsimd b,int perm){
switch (perm){
#if defined(AVX1)||defined(AVX2)
// 8x32 bits=>3 permutes
case 2: y.v = _mm256_shuffle_ps(b.v,b.v,_MM_SHUFFLE(2,3,0,1)); break;
case 1: y.v = _mm256_shuffle_ps(b.v,b.v,_MM_SHUFFLE(1,0,3,2)); break;
case 0: y.v = _mm256_permute2f128_ps(b.v,b.v,0x01); break;
#endif
#ifdef SSE2
case 1: y.v = _mm_shuffle_ps(b.v,b.v,_MM_SHUFFLE(2,3,0,1)); break;
case 0: y.v = _mm_shuffle_ps(b.v,b.v,_MM_SHUFFLE(1,0,3,2));break;
#endif
#ifdef AVX512
// 16 floats=> permutes
// Permute 0 every abcd efgh ijkl mnop -> badc fehg jilk nmpo
// Permute 1 every abcd efgh ijkl mnop -> cdab ghef jkij opmn
// Permute 2 every abcd efgh ijkl mnop -> efgh abcd mnop ijkl
// Permute 3 every abcd efgh ijkl mnop -> ijkl mnop abcd efgh
case 3: y.v = _mm512_swizzle_ps(b.v,_MM_SWIZ_REG_CDAB); break;
case 2: y.v = _mm512_swizzle_ps(b.v,_MM_SWIZ_REG_BADC); break;
case 1: y.v = _mm512_permute4f128_ps(b.v,(_MM_PERM_ENUM)_MM_SHUFFLE(2,3,0,1)); break;
case 0: y.v = _mm512_permute4f128_ps(b.v,(_MM_PERM_ENUM)_MM_SHUFFLE(1,0,3,2)); break;
#endif
#ifdef QPX
#error not implemented
#endif
default: assert(0); break;
}
};
};
#include <Grid_vRealF.h>
#include <Grid_vRealD.h>
#include <Grid_vComplexF.h>
#include <Grid_vComplexD.h>
#include <Grid_vInteger.h>
#endif