mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 15:55:37 +00:00
161 lines
4.6 KiB
C++
161 lines
4.6 KiB
C++
/*
|
|
@file stoutSmear.hpp
|
|
@brief Declares Stout smearing class
|
|
*/
|
|
#ifndef STOUT_SMEAR_
|
|
#define STOUT_SMEAR_
|
|
|
|
namespace Grid {
|
|
namespace QCD {
|
|
|
|
/*! @brief Stout smearing of link variable. */
|
|
template <class Gimpl>
|
|
class Smear_Stout : public Smear<Gimpl> {
|
|
private:
|
|
const Smear<Gimpl>* SmearBase;
|
|
|
|
public:
|
|
INHERIT_GIMPL_TYPES(Gimpl)
|
|
|
|
Smear_Stout(Smear<Gimpl>* base) : SmearBase(base) {
|
|
assert(Nc == 3);// "Stout smearing currently implemented only for Nc==3");
|
|
}
|
|
|
|
/*! Default constructor */
|
|
Smear_Stout(double rho = 1.0) : SmearBase(new Smear_APE<Gimpl>(rho)) {
|
|
assert(Nc == 3);// "Stout smearing currently implemented only for Nc==3");
|
|
}
|
|
|
|
~Smear_Stout() {} // delete SmearBase...
|
|
|
|
void smear(GaugeField& u_smr, const GaugeField& U) const {
|
|
GaugeField C(U._grid);
|
|
GaugeLinkField tmp(U._grid), iq_mu(U._grid), Umu(U._grid);
|
|
|
|
std::cout << GridLogDebug << "Stout smearing started\n";
|
|
|
|
// Smear the configurations
|
|
SmearBase->smear(C, U);
|
|
|
|
for (int mu = 0; mu < Nd; mu++) {
|
|
tmp = peekLorentz(C, mu);
|
|
Umu = peekLorentz(U, mu);
|
|
iq_mu = Ta(
|
|
tmp *
|
|
adj(Umu)); // iq_mu = Ta(Omega_mu) to match the signs with the paper
|
|
exponentiate_iQ(tmp, iq_mu);
|
|
pokeLorentz(u_smr, tmp * Umu, mu); // u_smr = exp(iQ_mu)*U_mu
|
|
}
|
|
std::cout << GridLogDebug << "Stout smearing completed\n";
|
|
};
|
|
|
|
void derivative(GaugeField& SigmaTerm, const GaugeField& iLambda,
|
|
const GaugeField& Gauge) const {
|
|
SmearBase->derivative(SigmaTerm, iLambda, Gauge);
|
|
};
|
|
|
|
void BaseSmear(GaugeField& C, const GaugeField& U) const {
|
|
SmearBase->smear(C, U);
|
|
};
|
|
|
|
|
|
// Repetion of code here (use the Tensor_exp.h function)
|
|
void exponentiate_iQ(GaugeLinkField& e_iQ, const GaugeLinkField& iQ) const {
|
|
// Put this outside
|
|
// only valid for SU(3) matrices
|
|
|
|
// only one Lorentz direction at a time
|
|
|
|
// notice that it actually computes
|
|
// exp ( input matrix )
|
|
// the i sign is coming from outside
|
|
// input matrix is anti-hermitian NOT hermitian
|
|
|
|
GridBase* grid = iQ._grid;
|
|
GaugeLinkField unity(grid);
|
|
unity = 1.0;
|
|
|
|
GaugeLinkField iQ2(grid), iQ3(grid);
|
|
LatticeComplex u(grid), w(grid);
|
|
LatticeComplex f0(grid), f1(grid), f2(grid);
|
|
|
|
iQ2 = iQ * iQ;
|
|
iQ3 = iQ * iQ2;
|
|
|
|
set_uw(u, w, iQ2, iQ3);
|
|
set_fj(f0, f1, f2, u, w);
|
|
|
|
e_iQ = f0 * unity + timesMinusI(f1) * iQ - f2 * iQ2;
|
|
};
|
|
|
|
void set_uw(LatticeComplex& u, LatticeComplex& w, GaugeLinkField& iQ2,
|
|
GaugeLinkField& iQ3) const {
|
|
Complex one_over_three = 1.0 / 3.0;
|
|
Complex one_over_two = 1.0 / 2.0;
|
|
|
|
GridBase* grid = u._grid;
|
|
LatticeComplex c0(grid), c1(grid), tmp(grid), c0max(grid), theta(grid);
|
|
|
|
// sign in c0 from the conventions on the Ta
|
|
c0 = -imag(trace(iQ3)) * one_over_three;
|
|
c1 = -real(trace(iQ2)) * one_over_two;
|
|
|
|
// Cayley Hamilton checks to machine precision, tested
|
|
tmp = c1 * one_over_three;
|
|
c0max = 2.0 * pow(tmp, 1.5);
|
|
|
|
theta = acos(c0 / c0max) *
|
|
one_over_three; // divide by three here, now leave as it is
|
|
u = sqrt(tmp) * cos(theta);
|
|
w = sqrt(c1) * sin(theta);
|
|
}
|
|
|
|
void set_fj(LatticeComplex& f0, LatticeComplex& f1, LatticeComplex& f2,
|
|
const LatticeComplex& u, const LatticeComplex& w) const {
|
|
GridBase* grid = u._grid;
|
|
LatticeComplex xi0(grid), u2(grid), w2(grid), cosw(grid);
|
|
LatticeComplex fden(grid);
|
|
LatticeComplex h0(grid), h1(grid), h2(grid);
|
|
LatticeComplex e2iu(grid), emiu(grid), ixi0(grid), qt(grid);
|
|
LatticeComplex unity(grid);
|
|
unity = 1.0;
|
|
|
|
xi0 = func_xi0(w);
|
|
u2 = u * u;
|
|
w2 = w * w;
|
|
cosw = cos(w);
|
|
|
|
ixi0 = timesI(xi0);
|
|
emiu = cos(u) - timesI(sin(u));
|
|
e2iu = cos(2.0 * u) + timesI(sin(2.0 * u));
|
|
|
|
h0 = e2iu * (u2 - w2) +
|
|
emiu * ((8.0 * u2 * cosw) + (2.0 * u * (3.0 * u2 + w2) * ixi0));
|
|
h1 = e2iu * (2.0 * u) - emiu * ((2.0 * u * cosw) - (3.0 * u2 - w2) * ixi0);
|
|
h2 = e2iu - emiu * (cosw + (3.0 * u) * ixi0);
|
|
|
|
fden = unity / (9.0 * u2 - w2); // reals
|
|
f0 = h0 * fden;
|
|
f1 = h1 * fden;
|
|
f2 = h2 * fden;
|
|
}
|
|
|
|
LatticeComplex func_xi0(const LatticeComplex& w) const {
|
|
// Define a function to do the check
|
|
// if( w < 1e-4 ) std::cout << GridLogWarning<< "[Smear_stout] w too small:
|
|
// "<< w <<"\n";
|
|
return sin(w) / w;
|
|
}
|
|
|
|
LatticeComplex func_xi1(const LatticeComplex& w) const {
|
|
// Define a function to do the check
|
|
// if( w < 1e-4 ) std::cout << GridLogWarning << "[Smear_stout] w too small:
|
|
// "<< w <<"\n";
|
|
return cos(w) / (w * w) - sin(w) / (w * w * w);
|
|
}
|
|
};
|
|
}
|
|
}
|
|
|
|
#endif
|