1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00
Grid/tests/forces/Test_laplacian_force.cc

173 lines
5.5 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_rect_force.cc
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
Coordinate latt_size = GridDefaultLatt();
Coordinate simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
Coordinate mpi_layout = GridDefaultMpi();
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridRedBlackCartesian RBGrid(&Grid);
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
std::vector<int> seeds({1,2,3,4});
GridParallelRNG pRNG(&Grid);
pRNG.SeedFixedIntegers(std::vector<int>({15,91,21,3}));
LatticeGaugeField U(&Grid);
LatticeGaugeField P(&Grid);
LatticeColourMatrix P_mu(&Grid);
// Matrix in the algebra
for (int mu = 0; mu < Nd; mu++) {
SU<Nc>::GaussianFundamentalLieAlgebraMatrix(pRNG, P_mu);
PokeIndex<LorentzIndex>(P, P_mu, mu);
}
SU3::HotConfiguration(pRNG,U);
ConjugateGradient<LatticeGaugeField> CG(1.0e-8, 10000);
LaplacianParams LapPar(0.001, 1.0, 1000, 1e-8, 10, 64);
RealD Kappa = 0.99;
LaplacianAdjointField<PeriodicGimplR> Laplacian(&Grid, CG, LapPar, Kappa);
GeneralisedMomenta<PeriodicGimplR> LaplacianMomenta(&Grid, Laplacian);
LaplacianMomenta.M.ImportGauge(U);
LaplacianMomenta.MomentaDistribution(pRNG);// fills the Momenta with the correct distr
std::cout << std::setprecision(15);
std::cout << GridLogMessage << "MomentaAction" << std::endl;
ComplexD S = LaplacianMomenta.MomentaAction();
// get the deriv with respect to "U"
LatticeGaugeField UdSdU(&Grid);
LatticeGaugeField AuxDer(&Grid);
std::cout << GridLogMessage<< "DerivativeU" << std::endl;
LaplacianMomenta.DerivativeU(LaplacianMomenta.Mom, UdSdU);
LaplacianMomenta.AuxiliaryFieldsDerivative(AuxDer);
UdSdU += AuxDer;
////////////////////////////////////
// Modify the gauge field a little
////////////////////////////////////
RealD dt = 0.0001;
LatticeColourMatrix mommu(&Grid);
LatticeColourMatrix forcemu(&Grid);
LatticeGaugeField mom(&Grid);
LatticeGaugeField Uprime(&Grid);
std::cout << GridLogMessage << "Update the U " << std::endl;
for(int mu=0;mu<Nd;mu++){
// Traceless antihermitian momentum; gaussian in lie algebra
SU3::GaussianFundamentalLieAlgebraMatrix(pRNG, mommu);
auto Umu = PeekIndex<LorentzIndex>(U, mu);
PokeIndex<LorentzIndex>(mom,mommu,mu);
Umu = expMat(mommu, dt, 12) * Umu;
PokeIndex<LorentzIndex>(Uprime, ProjectOnGroup(Umu), mu);
}
std::cout << GridLogMessage << "New action " << std::endl;
LaplacianMomenta.M.ImportGauge(Uprime);
ComplexD Sprime = LaplacianMomenta.MomentaAction();
//////////////////////////////////////////////
// Use derivative to estimate dS
//////////////////////////////////////////////
LatticeComplex dS(&Grid); dS = Zero();
for(int mu=0;mu<Nd;mu++){
auto UdSdUmu = PeekIndex<LorentzIndex>(UdSdU,mu);
mommu = PeekIndex<LorentzIndex>(mom,mu);
// Update gauge action density
// U = exp(p dt) U
// dU/dt = p U
// so dSdt = trace( dUdt dSdU) = trace( p UdSdUmu )
dS = dS + trace(mommu*UdSdUmu)*dt*2.0;
}
ComplexD dSpred = sum(dS);
std::cout << GridLogMessage << " S "<<S<<std::endl;
std::cout << GridLogMessage << " Sprime "<<Sprime<<std::endl;
std::cout << GridLogMessage << "dS "<<Sprime-S<<std::endl;
std::cout << GridLogMessage << "pred dS "<< dSpred <<std::endl;
// P derivative
// Increment p
dt = 0.0001;
LaplacianMomenta.M.ImportGauge(U);
LatticeGaugeField UdSdP(&Grid);
LaplacianMomenta.DerivativeP(UdSdP);
LaplacianMomenta.Mom += dt*P;
Sprime = LaplacianMomenta.MomentaAction();
// Prediciton
dS = Zero();
for(int mu=0;mu<Nd;mu++){
auto dSdPmu = PeekIndex<LorentzIndex>(UdSdP,mu);
auto Pmu = PeekIndex<LorentzIndex>(P,mu);
// Update gauge action density
//
// dMom/dt = P
// so dSdt = trace( dPdt dSdP) = trace( P dSdP )
dS = dS + trace(Pmu*dSdPmu)*dt*2.0;
}
dSpred = sum(dS);
std::cout << GridLogMessage << " S "<<S<<std::endl;
std::cout << GridLogMessage << " Sprime "<<Sprime<<std::endl;
std::cout << GridLogMessage << "dS "<<Sprime-S<<std::endl;
std::cout << GridLogMessage << "pred dS "<< dSpred <<std::endl;
assert( fabs(real(Sprime-S-dSpred)) < 1.0 ) ;
std::cout<< GridLogMessage << "Done" <<std::endl;
Grid_finalize();
}