mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 15:55:37 +00:00
214 lines
7.3 KiB
C++
214 lines
7.3 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: ./lib/qcd/modules/plaquette.h
|
|
|
|
Copyright (C) 2017
|
|
|
|
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution
|
|
directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
|
|
#ifndef WILSONFLOW_H
|
|
#define WILSONFLOW_H
|
|
|
|
namespace Grid {
|
|
namespace QCD {
|
|
|
|
template <class Gimpl>
|
|
class WilsonFlow: public Smear<Gimpl>{
|
|
unsigned int Nstep;
|
|
unsigned int measure_interval;
|
|
mutable RealD epsilon, taus;
|
|
|
|
|
|
mutable WilsonGaugeAction<Gimpl> SG;
|
|
|
|
void evolve_step(typename Gimpl::GaugeField&) const;
|
|
void evolve_step_adaptive(typename Gimpl::GaugeField&, RealD);
|
|
RealD tau(unsigned int t)const {return epsilon*(t+1.0); }
|
|
|
|
public:
|
|
INHERIT_GIMPL_TYPES(Gimpl)
|
|
|
|
explicit WilsonFlow(unsigned int Nstep, RealD epsilon, unsigned int interval = 1):
|
|
Nstep(Nstep),
|
|
epsilon(epsilon),
|
|
measure_interval(interval),
|
|
SG(WilsonGaugeAction<Gimpl>(3.0)) {
|
|
// WilsonGaugeAction with beta 3.0
|
|
assert(epsilon > 0.0);
|
|
LogMessage();
|
|
}
|
|
|
|
void LogMessage() {
|
|
std::cout << GridLogMessage
|
|
<< "[WilsonFlow] Nstep : " << Nstep << std::endl;
|
|
std::cout << GridLogMessage
|
|
<< "[WilsonFlow] epsilon : " << epsilon << std::endl;
|
|
std::cout << GridLogMessage
|
|
<< "[WilsonFlow] full trajectory : " << Nstep * epsilon << std::endl;
|
|
}
|
|
|
|
virtual void smear(GaugeField&, const GaugeField&) const;
|
|
|
|
virtual void derivative(GaugeField&, const GaugeField&, const GaugeField&) const {
|
|
assert(0);
|
|
// undefined for WilsonFlow
|
|
}
|
|
|
|
void smear_adaptive(GaugeField&, const GaugeField&, RealD maxTau);
|
|
RealD energyDensityPlaquette(unsigned int step, const GaugeField& U) const;
|
|
RealD energyDensityPlaquette(const GaugeField& U) const;
|
|
};
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Implementations
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
template <class Gimpl>
|
|
void WilsonFlow<Gimpl>::evolve_step(typename Gimpl::GaugeField &U) const{
|
|
GaugeField Z(U._grid);
|
|
GaugeField tmp(U._grid);
|
|
SG.deriv(U, Z);
|
|
Z *= 0.25; // Z0 = 1/4 * F(U)
|
|
Gimpl::update_field(Z, U, -2.0*epsilon); // U = W1 = exp(ep*Z0)*W0
|
|
|
|
Z *= -17.0/8.0;
|
|
SG.deriv(U, tmp); Z += tmp; // -17/32*Z0 +Z1
|
|
Z *= 8.0/9.0; // Z = -17/36*Z0 +8/9*Z1
|
|
Gimpl::update_field(Z, U, -2.0*epsilon); // U_= W2 = exp(ep*Z)*W1
|
|
|
|
Z *= -4.0/3.0;
|
|
SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
|
|
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
|
|
Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
|
|
}
|
|
|
|
template <class Gimpl>
|
|
void WilsonFlow<Gimpl>::evolve_step_adaptive(typename Gimpl::GaugeField &U, RealD maxTau) {
|
|
if (maxTau - taus < epsilon){
|
|
epsilon = maxTau-taus;
|
|
}
|
|
//std::cout << GridLogMessage << "Integration epsilon : " << epsilon << std::endl;
|
|
GaugeField Z(U._grid);
|
|
GaugeField Zprime(U._grid);
|
|
GaugeField tmp(U._grid), Uprime(U._grid);
|
|
Uprime = U;
|
|
SG.deriv(U, Z);
|
|
Zprime = -Z;
|
|
Z *= 0.25; // Z0 = 1/4 * F(U)
|
|
Gimpl::update_field(Z, U, -2.0*epsilon); // U = W1 = exp(ep*Z0)*W0
|
|
|
|
Z *= -17.0/8.0;
|
|
SG.deriv(U, tmp); Z += tmp; // -17/32*Z0 +Z1
|
|
Zprime += 2.0*tmp;
|
|
Z *= 8.0/9.0; // Z = -17/36*Z0 +8/9*Z1
|
|
Gimpl::update_field(Z, U, -2.0*epsilon); // U_= W2 = exp(ep*Z)*W1
|
|
|
|
|
|
Z *= -4.0/3.0;
|
|
SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36*Z0 -8/9*Z1) +Z2
|
|
Z *= 3.0/4.0; // Z = 17/36*Z0 -8/9*Z1 +3/4*Z2
|
|
Gimpl::update_field(Z, U, -2.0*epsilon); // V(t+e) = exp(ep*Z)*W2
|
|
|
|
// Ramos
|
|
Gimpl::update_field(Zprime, Uprime, -2.0*epsilon); // V'(t+e) = exp(ep*Z')*W0
|
|
// Compute distance as norm^2 of the difference
|
|
GaugeField diffU = U - Uprime;
|
|
RealD diff = norm2(diffU);
|
|
// adjust integration step
|
|
|
|
taus += epsilon;
|
|
//std::cout << GridLogMessage << "Adjusting integration step with distance: " << diff << std::endl;
|
|
|
|
epsilon = epsilon*0.95*std::pow(1e-4/diff,1./3.);
|
|
//std::cout << GridLogMessage << "New epsilon : " << epsilon << std::endl;
|
|
|
|
}
|
|
|
|
template <class Gimpl>
|
|
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(unsigned int step, const GaugeField& U) const {
|
|
RealD td = tau(step);
|
|
return 2.0 * td * td * SG.S(U)/U._grid->gSites();
|
|
}
|
|
|
|
template <class Gimpl>
|
|
RealD WilsonFlow<Gimpl>::energyDensityPlaquette(const GaugeField& U) const {
|
|
return 2.0 * taus * taus * SG.S(U)/U._grid->gSites();
|
|
}
|
|
|
|
|
|
//#define WF_TIMING
|
|
|
|
|
|
|
|
template <class Gimpl>
|
|
void WilsonFlow<Gimpl>::smear(GaugeField& out, const GaugeField& in) const {
|
|
out = in;
|
|
for (unsigned int step = 1; step <= Nstep; step++) {
|
|
auto start = std::chrono::high_resolution_clock::now();
|
|
evolve_step(out);
|
|
auto end = std::chrono::high_resolution_clock::now();
|
|
std::chrono::duration<double> diff = end - start;
|
|
#ifdef WF_TIMING
|
|
std::cout << "Time to evolve " << diff.count() << " s\n";
|
|
#endif
|
|
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
|
|
<< step << " " << tau(step) << " "
|
|
<< energyDensityPlaquette(step,out) << std::endl;
|
|
if( step % measure_interval == 0){
|
|
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : "
|
|
<< step << " "
|
|
<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class Gimpl>
|
|
void WilsonFlow<Gimpl>::smear_adaptive(GaugeField& out, const GaugeField& in, RealD maxTau){
|
|
out = in;
|
|
taus = epsilon;
|
|
unsigned int step = 0;
|
|
do{
|
|
step++;
|
|
//std::cout << GridLogMessage << "Evolution time :"<< taus << std::endl;
|
|
evolve_step_adaptive(out, maxTau);
|
|
std::cout << GridLogMessage << "[WilsonFlow] Energy density (plaq) : "
|
|
<< step << " " << taus << " "
|
|
<< energyDensityPlaquette(out) << std::endl;
|
|
if( step % measure_interval == 0){
|
|
std::cout << GridLogMessage << "[WilsonFlow] Top. charge : "
|
|
<< step << " "
|
|
<< WilsonLoops<PeriodicGimplR>::TopologicalCharge(out) << std::endl;
|
|
}
|
|
} while (taus < maxTau);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
} // namespace QCD
|
|
} // namespace Grid
|
|
|
|
#endif // WILSONFLOW_H
|