1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-15 02:05:37 +00:00
Grid/lib/algorithms/LinearOperator.h
2017-05-02 00:47:18 -04:00

412 lines
14 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/algorithms/LinearOperator.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_ALGORITHM_LINEAR_OP_H
#define GRID_ALGORITHM_LINEAR_OP_H
namespace Grid {
/////////////////////////////////////////////////////////////////////////////////////////////
// LinearOperators Take a something and return a something.
/////////////////////////////////////////////////////////////////////////////////////////////
//
// Hopefully linearity is satisfied and the AdjOp is indeed the Hermitian conjugateugate (transpose if real):
//SBase
// i) F(a x + b y) = aF(x) + b F(y).
// ii) <x|Op|y> = <y|AdjOp|x>^\ast
//
// Would be fun to have a test linearity & Herm Conj function!
/////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class LinearOperatorBase {
public:
// Support for coarsening to a multigrid
virtual void OpDiag (const Field &in, Field &out) = 0; // Abstract base
virtual void OpDir (const Field &in, Field &out,int dir,int disp) = 0; // Abstract base
virtual void Op (const Field &in, Field &out) = 0; // Abstract base
virtual void AdjOp (const Field &in, Field &out) = 0; // Abstract base
virtual void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2)=0;
virtual void HermOp(const Field &in, Field &out)=0;
};
/////////////////////////////////////////////////////////////////////////////////////////////
// By sharing the class for Sparse Matrix across multiple operator wrappers, we can share code
// between RB and non-RB variants. Sparse matrix is like the fermion action def, and then
// the wrappers implement the specialisation of "Op" and "AdjOp" to the cases minimising
// replication of code.
//
// I'm not entirely happy with implementation; to share the Schur code between herm and non-herm
// while still having a "OpAndNorm" in the abstract base I had to implement it in both cases
// with an assert trap in the non-herm. This isn't right; there must be a better C++ way to
// do it, but I fear it required multiple inheritance and mixed in abstract base classes
/////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////
// Construct herm op from non-herm matrix
////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class MdagMLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
public:
MdagMLinearOperator(Matrix &Mat): _Mat(Mat){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
}
void Op (const Field &in, Field &out){
_Mat.M(in,out);
}
void AdjOp (const Field &in, Field &out){
_Mat.Mdag(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
_Mat.MdagM(in,out,n1,n2);
}
void HermOp(const Field &in, Field &out){
RealD n1,n2;
HermOpAndNorm(in,out,n1,n2);
}
};
////////////////////////////////////////////////////////////////////
// Construct herm op and shift it for mgrid smoother
////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class ShiftedMdagMLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
RealD _shift;
public:
ShiftedMdagMLinearOperator(Matrix &Mat,RealD shift): _Mat(Mat), _shift(shift){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
assert(0);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
assert(0);
}
void Op (const Field &in, Field &out){
_Mat.M(in,out);
assert(0);
}
void AdjOp (const Field &in, Field &out){
_Mat.Mdag(in,out);
assert(0);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
_Mat.MdagM(in,out,n1,n2);
out = out + _shift*in;
ComplexD dot;
dot= innerProduct(in,out);
n1=real(dot);
n2=norm2(out);
}
void HermOp(const Field &in, Field &out){
RealD n1,n2;
HermOpAndNorm(in,out,n1,n2);
}
};
////////////////////////////////////////////////////////////////////
// Wrap an already herm matrix
////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class HermitianLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
public:
HermitianLinearOperator(Matrix &Mat): _Mat(Mat){};
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
_Mat.Mdiag(in,out);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
_Mat.Mdir(in,out,dir,disp);
}
void Op (const Field &in, Field &out){
_Mat.M(in,out);
}
void AdjOp (const Field &in, Field &out){
_Mat.M(in,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
ComplexD dot;
_Mat.M(in,out);
dot= innerProduct(in,out);
n1=real(dot);
dot = innerProduct(out,out);
n2=real(dot);
}
void HermOp(const Field &in, Field &out){
_Mat.M(in,out);
}
};
//////////////////////////////////////////////////////////
// Even Odd Schur decomp operators; there are several
// ways to introduce the even odd checkerboarding
//////////////////////////////////////////////////////////
template<class Field>
class SchurOperatorBase : public LinearOperatorBase<Field> {
public:
virtual RealD Mpc (const Field &in, Field &out) =0;
virtual RealD MpcDag (const Field &in, Field &out) =0;
virtual void MpcDagMpc(const Field &in, Field &out,RealD &ni,RealD &no) {
Field tmp(in._grid);
ni=Mpc(in,tmp);
no=MpcDag(tmp,out);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
MpcDagMpc(in,out,n1,n2);
}
void HermOp(const Field &in, Field &out){
RealD n1,n2;
HermOpAndNorm(in,out,n1,n2);
}
void Op (const Field &in, Field &out){
Mpc(in,out);
}
void AdjOp (const Field &in, Field &out){
MpcDag(in,out);
}
// Support for coarsening to a multigrid
void OpDiag (const Field &in, Field &out) {
assert(0); // must coarsen the unpreconditioned system
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
assert(0);
}
};
template<class Matrix,class Field>
class SchurDiagMooeeOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
public:
SchurDiagMooeeOperator (Matrix &Mat): _Mat(Mat){};
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in._grid);
// std::cout <<"grid pointers: in._grid="<< in._grid << " out._grid=" << out._grid << " _Mat.Grid=" << _Mat.Grid() << " _Mat.RedBlackGrid=" << _Mat.RedBlackGrid() << std::endl;
_Mat.Meooe(in,tmp);
_Mat.MooeeInv(tmp,out);
_Mat.Meooe(out,tmp);
_Mat.Mooee(in,out);
return axpy_norm(out,-1.0,tmp,out);
}
virtual RealD MpcDag (const Field &in, Field &out){
Field tmp(in._grid);
_Mat.MeooeDag(in,tmp);
_Mat.MooeeInvDag(tmp,out);
_Mat.MeooeDag(out,tmp);
_Mat.MooeeDag(in,out);
return axpy_norm(out,-1.0,tmp,out);
}
};
template<class Matrix,class Field>
class SchurDiagOneOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
public:
SchurDiagOneOperator (Matrix &Mat): _Mat(Mat){};
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in._grid);
_Mat.Meooe(in,out);
_Mat.MooeeInv(out,tmp);
_Mat.Meooe(tmp,out);
_Mat.MooeeInv(out,tmp);
return axpy_norm(out,-1.0,tmp,in);
}
virtual RealD MpcDag (const Field &in, Field &out){
Field tmp(in._grid);
_Mat.MooeeInvDag(in,out);
_Mat.MeooeDag(out,tmp);
_Mat.MooeeInvDag(tmp,out);
_Mat.MeooeDag(out,tmp);
return axpy_norm(out,-1.0,tmp,in);
}
};
template<class Matrix,class Field>
class SchurDiagTwoOperator : public SchurOperatorBase<Field> {
protected:
Matrix &_Mat;
public:
SchurDiagTwoOperator (Matrix &Mat): _Mat(Mat){};
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in._grid);
_Mat.MooeeInv(in,out);
_Mat.Meooe(out,tmp);
_Mat.MooeeInv(tmp,out);
_Mat.Meooe(out,tmp);
return axpy_norm(out,-1.0,tmp,in);
}
virtual RealD MpcDag (const Field &in, Field &out){
Field tmp(in._grid);
_Mat.MeooeDag(in,out);
_Mat.MooeeInvDag(out,tmp);
_Mat.MeooeDag(tmp,out);
_Mat.MooeeInvDag(out,tmp);
return axpy_norm(out,-1.0,tmp,in);
}
};
#if 0
// This is specific to (Z)mobius fermions
template<class Matrix, class Field>
class KappaSimilarityTransform {
public:
// INHERIT_IMPL_TYPES(Matrix);
typedef typename Matrix::Coeff_t Coeff_t;
std::vector<Coeff_t> kappa, kappaDag, kappaInv, kappaInvDag;
KappaSimilarityTransform (Matrix &zmob) {
for (int i=0;i<(int)zmob.bs.size();i++) {
Coeff_t k = 1.0 / ( 2.0 * (zmob.bs[i] *(4 - zmob.M5) + 1.0) );
kappa.push_back( k );
kappaDag.push_back( conj(k) );
kappaInv.push_back( 1.0 / k );
kappaInvDag.push_back( 1.0 / conj(k) );
}
}
template<typename vobj>
void sscale(const Lattice<vobj>& in, Lattice<vobj>& out, Coeff_t* s) {
GridBase *grid=out._grid;
out.checkerboard = in.checkerboard;
assert(grid->_simd_layout[0] == 1); // should be fine for ZMobius for now
int Ls = grid->_rdimensions[0];
parallel_for(int ss=0;ss<grid->oSites();ss++){
vobj tmp = s[ss % Ls]*in._odata[ss];
vstream(out._odata[ss],tmp);
}
}
RealD sscale_norm(const Field& in, Field& out, Coeff_t* s) {
sscale(in,out,s);
return norm2(out);
}
virtual RealD M (const Field& in, Field& out) { return sscale_norm(in,out,&kappa[0]); }
virtual RealD MDag (const Field& in, Field& out) { return sscale_norm(in,out,&kappaDag[0]);}
virtual RealD MInv (const Field& in, Field& out) { return sscale_norm(in,out,&kappaInv[0]);}
virtual RealD MInvDag (const Field& in, Field& out) { return sscale_norm(in,out,&kappaInvDag[0]);}
};
template<class Matrix,class Field>
class SchurDiagTwoKappaOperator : public SchurOperatorBase<Field> {
public:
KappaSimilarityTransform<Matrix, Field> _S;
SchurDiagTwoOperator<Matrix, Field> _Mat;
SchurDiagTwoKappaOperator (Matrix &Mat): _S(Mat), _Mat(Mat) {};
virtual RealD Mpc (const Field &in, Field &out) {
Field tmp(in._grid);
_S.MInv(in,out);
_Mat.Mpc(out,tmp);
return _S.M(tmp,out);
}
virtual RealD MpcDag (const Field &in, Field &out){
Field tmp(in._grid);
_S.MDag(in,out);
_Mat.MpcDag(out,tmp);
return _S.MInvDag(tmp,out);
}
};
#endif
/////////////////////////////////////////////////////////////
// Base classes for functions of operators
/////////////////////////////////////////////////////////////
template<class Field> class OperatorFunction {
public:
virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) = 0;
};
template<class Field> class LinearFunction {
public:
virtual void operator() (const Field &in, Field &out) = 0;
};
/////////////////////////////////////////////////////////////
// Base classes for Multishift solvers for operators
/////////////////////////////////////////////////////////////
template<class Field> class OperatorMultiFunction {
public:
virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, std::vector<Field> &out) = 0;
};
// FIXME : To think about
// Chroma functionality list defining LinearOperator
/*
virtual void operator() (T& chi, const T& psi, enum PlusMinus isign) const = 0;
virtual void operator() (T& chi, const T& psi, enum PlusMinus isign, Real epsilon) const
virtual const Subset& subset() const = 0;
virtual unsigned long nFlops() const { return 0; }
virtual void deriv(P& ds_u, const T& chi, const T& psi, enum PlusMinus isign) const
class UnprecLinearOperator : public DiffLinearOperator<T,P,Q>
const Subset& subset() const {return all;}
};
*/
}
#endif