1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 09:15:38 +01:00
Grid/lib/simd/Grid_qpx.h

620 lines
16 KiB
C++

/*******************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/simd/Grid_qpx.h
Copyright (C) 2016
Copyright (C) 2017
Author: Antonin Portelli <antonin.portelli@me.com>
Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
******************************************************************************/
#ifndef GEN_SIMD_WIDTH
#define GEN_SIMD_WIDTH 32u
#endif
#include "Grid_generic_types.h" // Definitions for simulated integer SIMD.
namespace Grid {
#ifdef QPX
#include <spi/include/kernel/location.h>
#include <spi/include/l1p/types.h>
#include <hwi/include/bqc/l1p_mmio.h>
#include <hwi/include/bqc/A2_inlines.h>
#endif
namespace Optimization {
typedef struct
{
float v0,v1,v2,v3;
} vector4float;
inline std::ostream & operator<<(std::ostream& stream, const vector4double a)
{
stream << "{"<<vec_extract(a,0)<<","<<vec_extract(a,1)<<","<<vec_extract(a,2)<<","<<vec_extract(a,3)<<"}";
return stream;
};
inline std::ostream & operator<<(std::ostream& stream, const vector4float a)
{
stream << "{"<< a.v0 <<","<< a.v1 <<","<< a.v2 <<","<< a.v3 <<"}";
return stream;
};
struct Vsplat{
//Complex float
inline vector4float operator()(float a, float b){
return (vector4float){a, b, a, b};
}
// Real float
inline vector4float operator()(float a){
return (vector4float){a, a, a, a};
}
//Complex double
inline vector4double operator()(double a, double b){
return (vector4double){a, b, a, b};
}
//Real double
inline vector4double operator()(double a){
return (vector4double){a, a, a, a};
}
//Integer
inline veci operator()(Integer a){
veci out;
VECTOR_FOR(i, W<Integer>::r, 1)
{
out.v[i] = a;
}
return out;
}
};
struct Vstore{
//Float
inline void operator()(vector4double a, float *f){
vec_st(a, 0, f);
}
inline void operator()(vector4double a, vector4float &f){
vec_st(a, 0, (float *)(&f));
}
inline void operator()(vector4float a, float *f){
f[0] = a.v0;
f[1] = a.v1;
f[2] = a.v2;
f[3] = a.v3;
}
//Double
inline void operator()(vector4double a, double *d){
vec_st(a, 0, d);
}
//Integer
inline void operator()(veci a, Integer *i){
*((veci *)i) = a;
}
};
struct Vstream{
//Float
inline void operator()(float *f, vector4double a){
vec_st(a, 0, f);
}
inline void operator()(vector4float f, vector4double a){
vec_st(a, 0, (float *)(&f));
}
inline void operator()(float *f, vector4float a){
f[0] = a.v0;
f[1] = a.v1;
f[2] = a.v2;
f[3] = a.v3;
}
//Double
inline void operator()(double *d, vector4double a){
vec_st(a, 0, d);
}
};
struct Vset{
// Complex float
inline vector4float operator()(Grid::ComplexF *a){
return (vector4float){a[0].real(), a[0].imag(), a[1].real(), a[1].imag()};
}
// Complex double
inline vector4double operator()(Grid::ComplexD *a){
return vec_ld(0, (double *)a);
}
// Real float
inline vector4float operator()(float *a){
return (vector4float){a[0], a[1], a[2], a[3]};
}
inline vector4double operator()(vector4float a){
return vec_ld(0, (float *)(&a));
}
// Real double
inline vector4double operator()(double *a){
return vec_ld(0, a);
}
// Integer
inline veci operator()(Integer *a){
veci out;
out = *((veci *)a);
return out;
}
};
template <typename Out_type, typename In_type>
struct Reduce{
//Need templated class to overload output type
//General form must generate error if compiled
inline Out_type operator()(In_type in){
printf("Error, using wrong Reduce function\n");
exit(1);
return 0;
}
};
/////////////////////////////////////////////////////
// Arithmetic operations
/////////////////////////////////////////////////////
#define FLOAT_WRAP_3(fn, pref)\
pref vector4float fn(vector4float a, vector4float b, vector4float c) \
{\
vector4double ad, bd, rd, cd; \
vector4float r;\
\
ad = Vset()(a);\
bd = Vset()(b);\
cd = Vset()(c);\
rd = fn(ad, bd, cd); \
Vstore()(rd, r);\
\
return r;\
}
#define FLOAT_WRAP_2(fn, pref)\
pref vector4float fn(vector4float a, vector4float b)\
{\
vector4double ad, bd, rd;\
vector4float r;\
\
ad = Vset()(a);\
bd = Vset()(b);\
rd = fn(ad, bd);\
Vstore()(rd, r);\
\
return r;\
}
#define FLOAT_WRAP_1(fn, pref)\
pref vector4float fn(vector4float a)\
{\
vector4double ad, rd;\
vector4float r;\
\
ad = Vset()(a);\
rd = fn(ad);\
Vstore()(rd, r);\
\
return r;\
}
struct Sum{
//Complex/Real double
inline vector4double operator()(vector4double a, vector4double b){
return vec_add(a, b);
}
//Complex/Real float
FLOAT_WRAP_2(operator(), inline)
//Integer
inline veci operator()(veci a, veci b){
veci out;
VECTOR_FOR(i, W<Integer>::r, 1)
{
out.v[i] = a.v[i] + b.v[i];
}
return out;
}
};
struct Sub{
//Complex/Real double
inline vector4double operator()(vector4double a, vector4double b){
return vec_sub(a, b);
}
//Complex/Real float
FLOAT_WRAP_2(operator(), inline)
//Integer
inline veci operator()(veci a, veci b){
veci out;
VECTOR_FOR(i, W<Integer>::r, 1)
{
out.v[i] = a.v[i] - b.v[i];
}
return out;
}
};
struct MultRealPart{
// Complex double
inline vector4double operator()(vector4double a, vector4double b){
// return vec_xmul(b, a);
return vec_xmul(a, b);
}
FLOAT_WRAP_2(operator(), inline)
};
struct MaddRealPart{
// Complex double
inline vector4double operator()(vector4double a, vector4double b,vector4double c){
return vec_xmadd(a, b, c);
}
FLOAT_WRAP_3(operator(), inline)
};
struct MultComplex{
// Complex double
inline vector4double operator()(vector4double a, vector4double b){
return vec_xxnpmadd(a, b, vec_xmul(b, a));
}
// Complex float
FLOAT_WRAP_2(operator(), inline)
};
struct Mult{
// Real double
inline vector4double operator()(vector4double a, vector4double b){
return vec_mul(a, b);
}
// Real float
FLOAT_WRAP_2(operator(), inline)
// Integer
inline veci operator()(veci a, veci b){
veci out;
VECTOR_FOR(i, W<Integer>::r, 1)
{
out.v[i] = a.v[i]*b.v[i];
}
return out;
}
};
struct Div{
// Real double
inline vector4double operator()(vector4double a, vector4double b){
return vec_swdiv(a, b);
}
// Real float
FLOAT_WRAP_2(operator(), inline)
// Integer
inline veci operator()(veci a, veci b){
veci out;
VECTOR_FOR(i, W<Integer>::r, 1)
{
out.v[i] = a.v[i]/b.v[i];
}
return out;
}
};
struct Conj{
// Complex double
inline vector4double operator()(vector4double v){
return vec_mul(v, (vector4double){1., -1., 1., -1.});
}
// Complex float
FLOAT_WRAP_1(operator(), inline)
};
struct TimesMinusI{
//Complex double
inline vector4double operator()(vector4double v, vector4double ret){
return vec_xxcpnmadd(v, (vector4double){1., 1., 1., 1.},
(vector4double){0., 0., 0., 0.});
}
// Complex float
FLOAT_WRAP_2(operator(), inline)
};
struct TimesI{
//Complex double
inline vector4double operator()(vector4double v, vector4double ret){
return vec_xxcpnmadd(v, (vector4double){-1., -1., -1., -1.},
(vector4double){0., 0., 0., 0.});
}
// Complex float
FLOAT_WRAP_2(operator(), inline)
};
#define USE_FP16
struct PrecisionChange {
static inline vech StoH (const vector4float &a, const vector4float &b) {
vech ret;
std::cout << GridLogError << "QPX single to half precision conversion not yet supported." << std::endl;
assert(0);
return ret;
}
static inline void HtoS (vech h, vector4float &sa, vector4float &sb) {
std::cout << GridLogError << "QPX half to single precision conversion not yet supported." << std::endl;
assert(0);
}
static inline vector4float DtoS (vector4double a, vector4double b) {
vector4float ret;
std::cout << GridLogError << "QPX double to single precision conversion not yet supported." << std::endl;
assert(0);
return ret;
}
static inline void StoD (vector4float s, vector4double &a, vector4double &b) {
std::cout << GridLogError << "QPX single to double precision conversion not yet supported." << std::endl;
assert(0);
}
static inline vech DtoH (vector4double a, vector4double b,
vector4double c, vector4double d) {
vech ret;
std::cout << GridLogError << "QPX double to half precision conversion not yet supported." << std::endl;
assert(0);
return ret;
}
static inline void HtoD (vech h, vector4double &a, vector4double &b,
vector4double &c, vector4double &d) {
std::cout << GridLogError << "QPX half to double precision conversion not yet supported." << std::endl;
assert(0);
}
};
//////////////////////////////////////////////
// Exchange support
#define FLOAT_WRAP_EXCHANGE(fn) \
static inline void fn(vector4float &out1, vector4float &out2, \
vector4float in1, vector4float in2) \
{ \
vector4double out1d, out2d, in1d, in2d; \
in1d = Vset()(in1); \
in2d = Vset()(in2); \
fn(out1d, out2d, in1d, in2d); \
Vstore()(out1d, out1); \
Vstore()(out2d, out2); \
}
struct Exchange{
// double precision
static inline void Exchange0(vector4double &out1, vector4double &out2,
vector4double in1, vector4double in2) {
out1 = vec_perm(in1, in2, vec_gpci(0145));
out2 = vec_perm(in1, in2, vec_gpci(02367));
}
static inline void Exchange1(vector4double &out1, vector4double &out2,
vector4double in1, vector4double in2) {
out1 = vec_perm(in1, in2, vec_gpci(0426));
out2 = vec_perm(in1, in2, vec_gpci(01537));
}
static inline void Exchange2(vector4double &out1, vector4double &out2,
vector4double in1, vector4double in2) {
assert(0);
}
static inline void Exchange3(vector4double &out1, vector4double &out2,
vector4double in1, vector4double in2) {
assert(0);
}
// single precision
FLOAT_WRAP_EXCHANGE(Exchange0);
FLOAT_WRAP_EXCHANGE(Exchange1);
FLOAT_WRAP_EXCHANGE(Exchange2);
FLOAT_WRAP_EXCHANGE(Exchange3);
};
struct Permute{
//Complex double
static inline vector4double Permute0(vector4double v){ //0123 -> 2301
return vec_perm(v, v, vec_gpci(02301));
};
static inline vector4double Permute1(vector4double v){ //0123 -> 1032
return vec_perm(v, v, vec_gpci(01032));
};
static inline vector4double Permute2(vector4double v){
return v;
};
static inline vector4double Permute3(vector4double v){
return v;
};
// Complex float
FLOAT_WRAP_1(Permute0, static inline)
FLOAT_WRAP_1(Permute1, static inline)
FLOAT_WRAP_1(Permute2, static inline)
FLOAT_WRAP_1(Permute3, static inline)
};
struct Rotate{
template<int n> static inline vector4double tRotate(vector4double v){
if ( n==1 ) return vec_perm(v, v, vec_gpci(01230));
if ( n==2 ) return vec_perm(v, v, vec_gpci(02301));
if ( n==3 ) return vec_perm(v, v, vec_gpci(03012));
return v;
};
template<int n> static inline vector4float tRotate(vector4float a)
{
vector4double ad, rd;
vector4float r;
ad = Vset()(a);
rd = tRotate<n>(ad);
Vstore()(rd, r);
return r;
};
static inline vector4double rotate(vector4double v, int n){
switch(n){
case 0:
return v;
break;
case 1:
return tRotate<1>(v);
break;
case 2:
return tRotate<2>(v);
break;
case 3:
return tRotate<3>(v);
break;
default: assert(0);
}
}
static inline vector4float rotate(vector4float v, int n){
vector4double vd, rd;
vector4float r;
vd = Vset()(v);
rd = rotate(vd, n);
Vstore()(rd, r);
return r;
}
};
//Complex float Reduce
template<>
inline Grid::ComplexF
Reduce<Grid::ComplexF, vector4float>::operator()(vector4float v) { //2 complex
vector4float v1,v2;
v1 = Optimization::Permute::Permute0(v);
v1 = Optimization::Sum()(v1, v);
return Grid::ComplexF(v1.v0, v1.v1);
}
//Real float Reduce
template<>
inline Grid::RealF
Reduce<Grid::RealF, vector4float>::operator()(vector4float v){ //4 floats
vector4float v1,v2;
v1 = Optimization::Permute::Permute0(v);
v1 = Optimization::Sum()(v1, v);
v2 = Optimization::Permute::Permute1(v1);
v1 = Optimization::Sum()(v1, v2);
return v1.v0;
}
//Complex double Reduce
template<>
inline Grid::ComplexD
Reduce<Grid::ComplexD, vector4double>::operator()(vector4double v){ //2 complex
vector4double v1;
v1 = Optimization::Permute::Permute0(v);
v1 = vec_add(v1, v);
return Grid::ComplexD(vec_extract(v1, 0), vec_extract(v1, 1));
}
//Real double Reduce
template<>
inline Grid::RealD
Reduce<Grid::RealD, vector4double>::operator()(vector4double v){ //4 doubles
vector4double v1,v2;
v1 = Optimization::Permute::Permute0(v);
v1 = vec_add(v1, v);
v2 = Optimization::Permute::Permute1(v1);
v1 = vec_add(v1, v2);
return vec_extract(v1, 0);
}
//Integer Reduce
template<>
inline Integer Reduce<Integer, veci>::operator()(veci in){
Integer a = 0;
for (unsigned int i = 0; i < W<Integer>::r; ++i)
{
a += in.v[i];
}
return a;
}
}
////////////////////////////////////////////////////////////////////////////////
// Here assign types
typedef Optimization::vech SIMD_Htype; // Half precision type
typedef Optimization::vector4float SIMD_Ftype; // Single precision type
typedef vector4double SIMD_Dtype; // Double precision type
typedef Optimization::veci SIMD_Itype; // Integer type
// prefetch utilities
inline void v_prefetch0(int size, const char *ptr){};
inline void prefetch_HINT_T0(const char *ptr){};
// Function name aliases
typedef Optimization::Vsplat VsplatSIMD;
typedef Optimization::Vstore VstoreSIMD;
typedef Optimization::Vset VsetSIMD;
typedef Optimization::Vstream VstreamSIMD;
template <typename S, typename T> using ReduceSIMD = Optimization::Reduce<S,T>;
// Arithmetic operations
typedef Optimization::Sum SumSIMD;
typedef Optimization::Sub SubSIMD;
typedef Optimization::Mult MultSIMD;
typedef Optimization::Div DivSIMD;
typedef Optimization::MultComplex MultComplexSIMD;
typedef Optimization::MultRealPart MultRealPartSIMD;
typedef Optimization::MaddRealPart MaddRealPartSIMD;
typedef Optimization::Conj ConjSIMD;
typedef Optimization::TimesMinusI TimesMinusISIMD;
typedef Optimization::TimesI TimesISIMD;
}