1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 15:55:37 +00:00
Grid/lib/lattice/Lattice_transfer.h
paboyle 0e6197fbed Introduce accelerator friendly expression template rewrite.
Must obtain and access lattice indexing through a view object that is safe
to copy construct in copy to GPU (without copying the lattice).
2018-03-04 16:03:19 +00:00

1010 lines
29 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/lattice/Lattice_transfer.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_LATTICE_TRANSFER_H
#define GRID_LATTICE_TRANSFER_H
NAMESPACE_BEGIN(Grid);
inline void subdivides(GridBase *coarse,GridBase *fine)
{
assert(coarse->_ndimension == fine->_ndimension);
int _ndimension = coarse->_ndimension;
// local and global volumes subdivide cleanly after SIMDization
for(int d=0;d<_ndimension;d++){
assert(coarse->_processors[d] == fine->_processors[d]);
assert(coarse->_simd_layout[d] == fine->_simd_layout[d]);
assert((fine->_rdimensions[d] / coarse->_rdimensions[d])* coarse->_rdimensions[d]==fine->_rdimensions[d]);
}
}
////////////////////////////////////////////////////////////////////////////////////////////
// remove and insert a half checkerboard
////////////////////////////////////////////////////////////////////////////////////////////
template<class vobj> inline void pickCheckerboard(int cb,Lattice<vobj> &half,const Lattice<vobj> &full){
half.Checkerboard() = cb;
auto half_v = half.View();
auto full_v = full.View();
thread_loop( (int ss=0;ss<full.Grid()->oSites();ss++),{
int cbos;
Coordinate coor;
full.Grid()->oCoorFromOindex(coor,ss);
cbos=half.Grid()->CheckerBoard(coor);
if (cbos==cb) {
int ssh=half.Grid()->oIndex(coor);
half_v[ssh] = full_v[ss];
}
});
}
template<class vobj> inline void setCheckerboard(Lattice<vobj> &full,const Lattice<vobj> &half){
int cb = half.Checkerboard();
auto half_v = half.View();
auto full_v = full.View();
thread_loop( (int ss=0;ss<full.Grid()->oSites();ss++), {
Coordinate coor;
int cbos;
full.Grid()->oCoorFromOindex(coor,ss);
cbos=half.Grid()->CheckerBoard(coor);
if (cbos==cb) {
int ssh=half.Grid()->oIndex(coor);
full_v[ss]=half_v[ssh];
}
});
}
template<class vobj,class CComplex,int nbasis>
inline void blockProject(Lattice<iVector<CComplex,nbasis > > &coarseData,
const Lattice<vobj> &fineData,
const std::vector<Lattice<vobj> > &Basis)
{
GridBase * fine = fineData.Grid();
GridBase * coarse= coarseData.Grid();
int _ndimension = coarse->_ndimension;
// checks
assert( nbasis == Basis.size() );
subdivides(coarse,fine);
for(int i=0;i<nbasis;i++){
conformable(Basis[i],fineData);
}
Coordinate block_r (_ndimension);
for(int d=0 ; d<_ndimension;d++){
block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d];
assert(block_r[d]*coarse->_rdimensions[d] == fine->_rdimensions[d]);
}
coarseData=Zero();
auto fineData_ = fineData.View();
auto coarseData_ = coarseData.View();
// Loop over coars parallel, and then loop over fine associated with coarse.
thread_loop( (int sf=0;sf<fine->oSites();sf++),{
int sc;
Coordinate coor_c(_ndimension);
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
thread_critical {
for(int i=0;i<nbasis;i++) {
auto Basis_ = Basis[i].View();
coarseData_[sc](i)=coarseData_[sc](i) + innerProduct(Basis_[sf],fineData_[sf]);
}
}
});
return;
}
template<class vobj,class CComplex>
inline void blockZAXPY(Lattice<vobj> &fineZ,
const Lattice<CComplex> &coarseA,
const Lattice<vobj> &fineX,
const Lattice<vobj> &fineY)
{
GridBase * fine = fineZ.Grid();
GridBase * coarse= coarseA.Grid();
fineZ.Checkerboard()=fineX.Checkerboard();
assert(fineX.Checkerboard()==fineY.Checkerboard());
subdivides(coarse,fine); // require they map
conformable(fineX,fineY);
conformable(fineX,fineZ);
int _ndimension = coarse->_ndimension;
Coordinate block_r (_ndimension);
// FIXME merge with subdivide checking routine as this is redundant
for(int d=0 ; d<_ndimension;d++){
block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d];
assert(block_r[d]*coarse->_rdimensions[d]==fine->_rdimensions[d]);
}
auto fineZ_ = fineZ.View();
auto fineX_ = fineX.View();
auto fineY_ = fineY.View();
auto coarseA_= coarseA.View();
thread_loop( (int sf=0;sf<fine->oSites();sf++),{
int sc;
Coordinate coor_c(_ndimension);
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
// z = A x + y
fineZ_[sf]=coarseA_[sc]*fineX_[sf]+fineY_[sf];
});
return;
}
template<class vobj,class CComplex>
inline void blockInnerProduct(Lattice<CComplex> &CoarseInner,
const Lattice<vobj> &fineX,
const Lattice<vobj> &fineY)
{
typedef decltype(innerProduct(vobj(),vobj())) dotp;
GridBase *coarse(CoarseInner.Grid());
GridBase *fine (fineX.Grid());
Lattice<dotp> fine_inner(fine); fine_inner.Checkerboard() = fineX.Checkerboard();
Lattice<dotp> coarse_inner(coarse);
// Precision promotion?
auto CoarseInner_ = CoarseInner.View();
auto coarse_inner_ = coarse_inner.View();
fine_inner = localInnerProduct(fineX,fineY);
blockSum(coarse_inner,fine_inner);
thread_loop( (int ss=0;ss<coarse->oSites();ss++),{
CoarseInner_[ss] = coarse_inner_[ss];
});
}
template<class vobj,class CComplex>
inline void blockNormalise(Lattice<CComplex> &ip,Lattice<vobj> &fineX)
{
GridBase *coarse = ip.Grid();
Lattice<vobj> zz(fineX.Grid()); zz=Zero(); zz.Checkerboard()=fineX.Checkerboard();
blockInnerProduct(ip,fineX,fineX);
ip = pow(ip,-0.5);
blockZAXPY(fineX,ip,fineX,zz);
}
// useful in multigrid project;
// Generic name : Coarsen?
template<class vobj>
inline void blockSum(Lattice<vobj> &coarseData,const Lattice<vobj> &fineData)
{
GridBase * fine = fineData.Grid();
GridBase * coarse= coarseData.Grid();
subdivides(coarse,fine); // require they map
int _ndimension = coarse->_ndimension;
Coordinate block_r (_ndimension);
for(int d=0 ; d<_ndimension;d++){
block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d];
}
// Turn this around to loop threaded over sc and interior loop
// over sf would thread better
coarseData=Zero();
auto coarseData_ = coarseData.View();
auto fineData_ = fineData.View();
thread_loop( (int sf=0;sf<fine->oSites();sf++),{
int sc;
Coordinate coor_c(_ndimension);
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
thread_critical {
coarseData_[sc]=coarseData_[sc]+fineData_[sf];
}
});
return;
}
template<class vobj>
inline void blockPick(GridBase *coarse,const Lattice<vobj> &unpicked,Lattice<vobj> &picked,Coordinate coor)
{
GridBase * fine = unpicked.Grid();
Lattice<vobj> zz(fine); zz.Checkerboard() = unpicked.Checkerboard();
Lattice<iScalar<vInteger> > fcoor(fine);
zz = Zero();
picked = unpicked;
for(int d=0;d<fine->_ndimension;d++){
LatticeCoordinate(fcoor,d);
int block= fine->_rdimensions[d] / coarse->_rdimensions[d];
int lo = (coor[d])*block;
int hi = (coor[d]+1)*block;
picked = where( (fcoor<hi) , picked, zz);
picked = where( (fcoor>=lo), picked, zz);
}
}
template<class vobj,class CComplex>
inline void blockOrthogonalise(Lattice<CComplex> &ip,std::vector<Lattice<vobj> > &Basis)
{
GridBase *coarse = ip.Grid();
GridBase *fine = Basis[0].Grid();
int nbasis = Basis.size() ;
// checks
subdivides(coarse,fine);
for(int i=0;i<nbasis;i++){
conformable(Basis[i].Grid(),fine);
}
for(int v=0;v<nbasis;v++) {
for(int u=0;u<v;u++) {
//Inner product & remove component
blockInnerProduct(ip,Basis[u],Basis[v]);
ip = -ip;
blockZAXPY<vobj,CComplex> (Basis[v],ip,Basis[u],Basis[v]);
}
blockNormalise(ip,Basis[v]);
}
}
template<class vobj,class CComplex,int nbasis>
inline void blockPromote(const Lattice<iVector<CComplex,nbasis > > &coarseData,
Lattice<vobj> &fineData,
const std::vector<Lattice<vobj> > &Basis)
{
GridBase * fine = fineData.Grid();
GridBase * coarse= coarseData.Grid();
int _ndimension = coarse->_ndimension;
// checks
assert( nbasis == Basis.size() );
subdivides(coarse,fine);
for(int i=0;i<nbasis;i++){
conformable(Basis[i].Grid(),fine);
}
Coordinate block_r (_ndimension);
for(int d=0 ; d<_ndimension;d++){
block_r[d] = fine->_rdimensions[d] / coarse->_rdimensions[d];
}
auto fineData_ = fineData.View();
auto coarseData_ = coarseData.View();
// Loop with a cache friendly loop ordering
thread_loop( (int sf=0;sf<fine->oSites();sf++),{
int sc;
Coordinate coor_c(_ndimension);
Coordinate coor_f(_ndimension);
Lexicographic::CoorFromIndex(coor_f,sf,fine->_rdimensions);
for(int d=0;d<_ndimension;d++) coor_c[d]=coor_f[d]/block_r[d];
Lexicographic::IndexFromCoor(coor_c,sc,coarse->_rdimensions);
for(int i=0;i<nbasis;i++) {
auto basis_ = Basis[i].View();
if(i==0) fineData_[sf]=coarseData_[sc](i) *basis_[sf];
else fineData_[sf]=fineData_[sf]+coarseData_[sc](i)*basis_[sf];
}
});
return;
}
// Useful for precision conversion, or indeed anything where an operator= does a conversion on scalars.
// Simd layouts need not match since we use peek/poke Local
template<class vobj,class vvobj>
void localConvert(const Lattice<vobj> &in,Lattice<vvobj> &out)
{
typedef typename vobj::scalar_object sobj;
typedef typename vvobj::scalar_object ssobj;
GridBase *ig = in.Grid();
GridBase *og = out.Grid();
int ni = ig->_ndimension;
int no = og->_ndimension;
assert(ni == no);
for(int d=0;d<no;d++){
assert(ig->_processors[d] == og->_processors[d]);
assert(ig->_ldimensions[d] == og->_ldimensions[d]);
assert(ig->lSites() == og->lSites());
}
thread_loop( (int idx=0;idx<ig->lSites();idx++),{
sobj s;
ssobj ss;
Coordinate lcoor(ni);
ig->LocalIndexToLocalCoor(idx,lcoor);
peekLocalSite(s,in,lcoor);
ss=s;
pokeLocalSite(ss,out,lcoor);
});
}
template<class vobj>
void InsertSlice(const Lattice<vobj> &lowDim,Lattice<vobj> & higherDim,int slice, int orthog)
{
typedef typename vobj::scalar_object sobj;
GridBase *lg = lowDim.Grid();
GridBase *hg = higherDim.Grid();
int nl = lg->_ndimension;
int nh = hg->_ndimension;
assert(nl+1 == nh);
assert(orthog<nh);
assert(orthog>=0);
assert(hg->_processors[orthog]==1);
int dl; dl = 0;
for(int d=0;d<nh;d++){
if ( d != orthog) {
assert(lg->_processors[dl] == hg->_processors[d]);
assert(lg->_ldimensions[dl] == hg->_ldimensions[d]);
dl++;
}
}
// the above should guarantee that the operations are local
thread_loop( (int idx=0;idx<lg->lSites();idx++),{
sobj s;
Coordinate lcoor(nl);
Coordinate hcoor(nh);
lg->LocalIndexToLocalCoor(idx,lcoor);
int ddl=0;
hcoor[orthog] = slice;
for(int d=0;d<nh;d++){
if ( d!=orthog ) {
hcoor[d]=lcoor[ddl++];
}
}
peekLocalSite(s,lowDim,lcoor);
pokeLocalSite(s,higherDim,hcoor);
});
}
template<class vobj>
void ExtractSlice(Lattice<vobj> &lowDim,const Lattice<vobj> & higherDim,int slice, int orthog)
{
typedef typename vobj::scalar_object sobj;
GridBase *lg = lowDim.Grid();
GridBase *hg = higherDim.Grid();
int nl = lg->_ndimension;
int nh = hg->_ndimension;
assert(nl+1 == nh);
assert(orthog<nh);
assert(orthog>=0);
assert(hg->_processors[orthog]==1);
int dl; dl = 0;
for(int d=0;d<nh;d++){
if ( d != orthog) {
assert(lg->_processors[dl] == hg->_processors[d]);
assert(lg->_ldimensions[dl] == hg->_ldimensions[d]);
dl++;
}
}
// the above should guarantee that the operations are local
thread_loop((int idx=0;idx<lg->lSites();idx++),{
sobj s;
Coordinate lcoor(nl);
Coordinate hcoor(nh);
lg->LocalIndexToLocalCoor(idx,lcoor);
int ddl=0;
hcoor[orthog] = slice;
for(int d=0;d<nh;d++){
if ( d!=orthog ) {
hcoor[d]=lcoor[ddl++];
}
}
peekLocalSite(s,higherDim,hcoor);
pokeLocalSite(s,lowDim,lcoor);
});
}
template<class vobj>
void InsertSliceLocal(const Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
{
typedef typename vobj::scalar_object sobj;
GridBase *lg = lowDim.Grid();
GridBase *hg = higherDim.Grid();
int nl = lg->_ndimension;
int nh = hg->_ndimension;
assert(nl == nh);
assert(orthog<nh);
assert(orthog>=0);
for(int d=0;d<nh;d++){
assert(lg->_processors[d] == hg->_processors[d]);
assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
}
// the above should guarantee that the operations are local
thread_loop( (int idx=0;idx<lg->lSites();idx++),{
sobj s;
Coordinate lcoor(nl);
Coordinate hcoor(nh);
lg->LocalIndexToLocalCoor(idx,lcoor);
if( lcoor[orthog] == slice_lo ) {
hcoor=lcoor;
hcoor[orthog] = slice_hi;
peekLocalSite(s,lowDim,lcoor);
pokeLocalSite(s,higherDim,hcoor);
}
});
}
template<class vobj>
void ExtractSliceLocal(Lattice<vobj> &lowDim, Lattice<vobj> & higherDim,int slice_lo,int slice_hi, int orthog)
{
typedef typename vobj::scalar_object sobj;
GridBase *lg = lowDim.Grid();
GridBase *hg = higherDim.Grid();
int nl = lg->_ndimension;
int nh = hg->_ndimension;
assert(nl == nh);
assert(orthog<nh);
assert(orthog>=0);
for(int d=0;d<nh;d++){
assert(lg->_processors[d] == hg->_processors[d]);
assert(lg->_ldimensions[d] == hg->_ldimensions[d]);
}
// the above should guarantee that the operations are local
thread_loop( (int idx=0;idx<lg->lSites();idx++),{
sobj s;
Coordinate lcoor(nl);
Coordinate hcoor(nh);
lg->LocalIndexToLocalCoor(idx,lcoor);
if( lcoor[orthog] == slice_lo ) {
hcoor=lcoor;
hcoor[orthog] = slice_hi;
peekLocalSite(s,higherDim,hcoor);
pokeLocalSite(s,lowDim,lcoor);
}
});
}
template<class vobj>
void Replicate(Lattice<vobj> &coarse,Lattice<vobj> & fine)
{
typedef typename vobj::scalar_object sobj;
GridBase *cg = coarse.Grid();
GridBase *fg = fine.Grid();
int nd = cg->_ndimension;
subdivides(cg,fg);
assert(cg->_ndimension==fg->_ndimension);
Coordinate ratio(cg->_ndimension);
for(int d=0;d<cg->_ndimension;d++){
ratio[d] = fg->_fdimensions[d]/cg->_fdimensions[d];
}
Coordinate fcoor(nd);
Coordinate ccoor(nd);
for(int g=0;g<fg->gSites();g++){
fg->GlobalIndexToGlobalCoor(g,fcoor);
for(int d=0;d<nd;d++){
ccoor[d] = fcoor[d]%cg->_gdimensions[d];
}
sobj tmp;
peekSite(tmp,coarse,ccoor);
pokeSite(tmp,fine,fcoor);
}
}
//Copy SIMD-vectorized lattice to array of scalar objects in lexicographic order
template<typename vobj, typename sobj>
typename std::enable_if<isSIMDvectorized<vobj>::value && !isSIMDvectorized<sobj>::value, void>::type
unvectorizeToLexOrdArray(std::vector<sobj> &out, const Lattice<vobj> &in)
{
typedef typename vobj::vector_type vtype;
GridBase* in_grid = in.Grid();
out.resize(in_grid->lSites());
int ndim = in_grid->Nd();
int in_nsimd = vtype::Nsimd();
std::vector<Coordinate > in_icoor(in_nsimd);
for(int lane=0; lane < in_nsimd; lane++){
in_icoor[lane].resize(ndim);
in_grid->iCoorFromIindex(in_icoor[lane], lane);
}
//loop over outer index
auto in_v = in.View();
thread_loop( (int in_oidx = 0; in_oidx < in_grid->oSites(); in_oidx++),{
//Assemble vector of pointers to output elements
ExtractPointerArray<sobj> out_ptrs(in_nsimd);
Coordinate in_ocoor(ndim);
in_grid->oCoorFromOindex(in_ocoor, in_oidx);
Coordinate lcoor(in_grid->Nd());
for(int lane=0; lane < in_nsimd; lane++){
for(int mu=0;mu<ndim;mu++){
lcoor[mu] = in_ocoor[mu] + in_grid->_rdimensions[mu]*in_icoor[lane][mu];
}
int lex;
Lexicographic::IndexFromCoor(lcoor, lex, in_grid->_ldimensions);
assert(lex < out.size());
out_ptrs[lane] = &out[lex];
}
//Unpack into those ptrs
const vobj & in_vobj = in_v[in_oidx];
extract(in_vobj, out_ptrs, 0);
});
}
//Copy SIMD-vectorized lattice to array of scalar objects in lexicographic order
template<typename vobj, typename sobj>
typename std::enable_if<isSIMDvectorized<vobj>::value
&& !isSIMDvectorized<sobj>::value, void>::type
vectorizeFromLexOrdArray( std::vector<sobj> &in, Lattice<vobj> &out)
{
typedef typename vobj::vector_type vtype;
GridBase* grid = out.Grid();
assert(in.size()==grid->lSites());
const int ndim = grid->Nd();
constexpr int nsimd = vtype::Nsimd();
std::vector<Coordinate > icoor(nsimd);
for(int lane=0; lane < nsimd; lane++){
icoor[lane].resize(ndim);
grid->iCoorFromIindex(icoor[lane],lane);
}
auto out_v = out.View();
thread_loop( (uint64_t oidx = 0; oidx < grid->oSites(); oidx++),{
//Assemble vector of pointers to output elements
ExtractPointerArray<sobj> ptrs(nsimd);
Coordinate ocoor(ndim);
Coordinate lcoor(ndim);
grid->oCoorFromOindex(ocoor, oidx);
for(int lane=0; lane < nsimd; lane++){
for(int mu=0;mu<ndim;mu++){
lcoor[mu] = ocoor[mu] + grid->_rdimensions[mu]*icoor[lane][mu];
}
int lex;
Lexicographic::IndexFromCoor(lcoor, lex, grid->_ldimensions);
ptrs[lane] = &in[lex];
}
//pack from those ptrs
vobj vecobj;
merge(vecobj, ptrs, 0);
out_v[oidx] = vecobj;
});
}
//Convert a Lattice from one precision to another
template<class VobjOut, class VobjIn>
void precisionChange(Lattice<VobjOut> &out, const Lattice<VobjIn> &in){
assert(out.Grid()->Nd() == in.Grid()->Nd());
out.Checkerboard() = in.Checkerboard();
GridBase *in_grid=in.Grid();
GridBase *out_grid = out.Grid();
typedef typename VobjOut::scalar_object SobjOut;
typedef typename VobjIn::scalar_object SobjIn;
int ndim = out.Grid()->Nd();
int out_nsimd = out_grid->Nsimd();
std::vector<Coordinate > out_icoor(out_nsimd);
for(int lane=0; lane < out_nsimd; lane++){
out_icoor[lane].resize(ndim);
out_grid->iCoorFromIindex(out_icoor[lane], lane);
}
std::vector<SobjOut> in_slex_conv(in_grid->lSites());
unvectorizeToLexOrdArray(in_slex_conv, in);
auto out_v = out.View();
thread_loop( (uint64_t out_oidx=0;out_oidx<out_grid->oSites();out_oidx++),{
Coordinate out_ocoor(ndim);
out_grid->oCoorFromOindex(out_ocoor, out_oidx);
ExtractPointerArray<SobjOut> ptrs(out_nsimd);
Coordinate lcoor(out_grid->Nd());
for(int lane=0; lane < out_nsimd; lane++){
for(int mu=0;mu<ndim;mu++)
lcoor[mu] = out_ocoor[mu] + out_grid->_rdimensions[mu]*out_icoor[lane][mu];
int llex; Lexicographic::IndexFromCoor(lcoor, llex, out_grid->_ldimensions);
ptrs[lane] = &in_slex_conv[llex];
}
merge(out_v[out_oidx], ptrs, 0);
});
}
////////////////////////////////////////////////////////////////////////////////
// Communicate between grids
////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////
// SIMPLE CASE:
///////////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Mesh of nodes (2x2) ; subdivide to 1x1 subdivisions
//
// Lex ord:
// N0 va0 vb0 vc0 vd0 N1 va1 vb1 vc1 vd1
// N2 va2 vb2 vc2 vd2 N3 va3 vb3 vc3 vd3
//
// Ratio = full[dim] / split[dim]
//
// For each dimension do an all to all; get Nvec -> Nvec / ratio
// Ldim -> Ldim * ratio
// LocalVol -> LocalVol * ratio
// full AllToAll(0)
// N0 va0 vb0 va1 vb1 N1 vc0 vd0 vc1 vd1
// N2 va2 vb2 va3 vb3 N3 vc2 vd2 vc3 vd3
//
// REARRANGE
// N0 va01 vb01 N1 vc01 vd01
// N2 va23 vb23 N3 vc23 vd23
//
// full AllToAll(1) // Not what is wanted. FIXME
// N0 va01 va23 N1 vc01 vc23
// N2 vb01 vb23 N3 vd01 vd23
//
// REARRANGE
// N0 va0123 N1 vc0123
// N2 vb0123 N3 vd0123
//
// Must also rearrange data to get into the NEW lex order of grid at each stage. Some kind of "insert/extract".
// NB: Easiest to programme if keep in lex order.
/*
* Let chunk = (fvol*nvec)/sP be size of a chunk. ( Divide lexico vol * nvec into fP/sP = M chunks )
*
* 2nd A2A (over sP nodes; subdivide the fP into sP chunks of M)
*
* node 0 1st chunk of node 0M..(1M-1); 2nd chunk of node 0M..(1M-1).. data chunk x M x sP = fL / sP * M * sP = fL * M growth
* node 1 1st chunk of node 1M..(2M-1); 2nd chunk of node 1M..(2M-1)..
* node 2 1st chunk of node 2M..(3M-1); 2nd chunk of node 2M..(3M-1)..
* node 3 1st chunk of node 3M..(3M-1); 2nd chunk of node 2M..(3M-1)..
* etc...
*/
template<class Vobj>
void Grid_split(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
{
typedef typename Vobj::scalar_object Sobj;
int full_vecs = full.size();
assert(full_vecs>=1);
GridBase * full_grid = full[0].Grid();
GridBase *split_grid = split.Grid();
int ndim = full_grid->_ndimension;
int full_nproc = full_grid->_Nprocessors;
int split_nproc =split_grid->_Nprocessors;
////////////////////////////////
// Checkerboard management
////////////////////////////////
int cb = full[0].Checkerboard();
split.Checkerboard() = cb;
//////////////////////////////
// Checks
//////////////////////////////
assert(full_grid->_ndimension==split_grid->_ndimension);
for(int n=0;n<full_vecs;n++){
assert(full[n].Checkerboard() == cb);
for(int d=0;d<ndim;d++){
assert(full[n].Grid()->_gdimensions[d]==split.Grid()->_gdimensions[d]);
assert(full[n].Grid()->_fdimensions[d]==split.Grid()->_fdimensions[d]);
}
}
int nvector =full_nproc/split_nproc;
assert(nvector*split_nproc==full_nproc);
assert(nvector == full_vecs);
Coordinate ratio(ndim);
for(int d=0;d<ndim;d++){
ratio[d] = full_grid->_processors[d]/ split_grid->_processors[d];
}
uint64_t lsites = full_grid->lSites();
uint64_t sz = lsites * nvector;
std::vector<Sobj> tmpdata(sz);
std::vector<Sobj> alldata(sz);
std::vector<Sobj> scalardata(lsites);
for(int v=0;v<nvector;v++){
unvectorizeToLexOrdArray(scalardata,full[v]);
thread_loop( (int site=0;site<lsites;site++),{
alldata[v*lsites+site] = scalardata[site];
});
}
int nvec = nvector; // Counts down to 1 as we collapse dims
Coordinate ldims = full_grid->_ldimensions;
for(int d=ndim-1;d>=0;d--){
if ( ratio[d] != 1 ) {
full_grid ->AllToAll(d,alldata,tmpdata);
if ( split_grid->_processors[d] > 1 ) {
alldata=tmpdata;
split_grid->AllToAll(d,alldata,tmpdata);
}
auto rdims = ldims;
auto M = ratio[d];
auto rsites= lsites*M;// increases rsites by M
nvec /= M; // Reduce nvec by subdivision factor
rdims[d] *= M; // increase local dim by same factor
int sP = split_grid->_processors[d];
int fP = full_grid->_processors[d];
int fvol = lsites;
int chunk = (nvec*fvol)/sP; assert(chunk*sP == nvec*fvol);
// Loop over reordered data post A2A
thread_loop( (int c=0;c<chunk;c++),{
Coordinate coor(ndim);
for(int m=0;m<M;m++){
for(int s=0;s<sP;s++){
// addressing; use lexico
int lex_r;
uint64_t lex_c = c+chunk*m+chunk*M*s;
uint64_t lex_fvol_vec = c+chunk*s;
uint64_t lex_fvol = lex_fvol_vec%fvol;
uint64_t lex_vec = lex_fvol_vec/fvol;
// which node sets an adder to the coordinate
Lexicographic::CoorFromIndex(coor, lex_fvol, ldims);
coor[d] += m*ldims[d];
Lexicographic::IndexFromCoor(coor, lex_r, rdims);
lex_r += lex_vec * rsites;
// LexicoFind coordinate & vector number within split lattice
alldata[lex_r] = tmpdata[lex_c];
}
}
});
ldims[d]*= ratio[d];
lsites *= ratio[d];
}
}
vectorizeFromLexOrdArray(alldata,split);
}
template<class Vobj>
void Grid_split(Lattice<Vobj> &full,Lattice<Vobj> & split)
{
int nvector = full.Grid()->_Nprocessors / split.Grid()->_Nprocessors;
std::vector<Lattice<Vobj> > full_v(nvector,full.Grid());
for(int n=0;n<nvector;n++){
full_v[n] = full;
}
Grid_split(full_v,split);
}
template<class Vobj>
void Grid_unsplit(std::vector<Lattice<Vobj> > & full,Lattice<Vobj> & split)
{
typedef typename Vobj::scalar_object Sobj;
int full_vecs = full.size();
assert(full_vecs>=1);
GridBase * full_grid = full[0].Grid();
GridBase *split_grid = split.Grid();
int ndim = full_grid->_ndimension;
int full_nproc = full_grid->_Nprocessors;
int split_nproc =split_grid->_Nprocessors;
////////////////////////////////
// Checkerboard management
////////////////////////////////
int cb = full[0].Checkerboard();
split.Checkerboard() = cb;
//////////////////////////////
// Checks
//////////////////////////////
assert(full_grid->_ndimension==split_grid->_ndimension);
for(int n=0;n<full_vecs;n++){
assert(full[n].Checkerboard() == cb);
for(int d=0;d<ndim;d++){
assert(full[n].Grid()->_gdimensions[d]==split.Grid()->_gdimensions[d]);
assert(full[n].Grid()->_fdimensions[d]==split.Grid()->_fdimensions[d]);
}
}
int nvector =full_nproc/split_nproc;
assert(nvector*split_nproc==full_nproc);
assert(nvector == full_vecs);
Coordinate ratio(ndim);
for(int d=0;d<ndim;d++){
ratio[d] = full_grid->_processors[d]/ split_grid->_processors[d];
}
uint64_t lsites = full_grid->lSites();
uint64_t sz = lsites * nvector;
std::vector<Sobj> tmpdata(sz);
std::vector<Sobj> alldata(sz);
std::vector<Sobj> scalardata(lsites);
unvectorizeToLexOrdArray(alldata,split);
/////////////////////////////////////////////////////////////////
// Start from split grid and work towards full grid
/////////////////////////////////////////////////////////////////
int nvec = 1;
uint64_t rsites = split_grid->lSites();
Coordinate rdims = split_grid->_ldimensions;
for(int d=0;d<ndim;d++){
if ( ratio[d] != 1 ) {
auto M = ratio[d];
int sP = split_grid->_processors[d];
int fP = full_grid->_processors[d];
auto ldims = rdims; ldims[d] /= M; // Decrease local dims by same factor
auto lsites= rsites/M; // Decreases rsites by M
int fvol = lsites;
int chunk = (nvec*fvol)/sP; assert(chunk*sP == nvec*fvol);
{
// Loop over reordered data post A2A
thread_loop( (int c=0;c<chunk;c++),{
Coordinate coor(ndim);
for(int m=0;m<M;m++){
for(int s=0;s<sP;s++){
// addressing; use lexico
int lex_r;
uint64_t lex_c = c+chunk*m+chunk*M*s;
uint64_t lex_fvol_vec = c+chunk*s;
uint64_t lex_fvol = lex_fvol_vec%fvol;
uint64_t lex_vec = lex_fvol_vec/fvol;
// which node sets an adder to the coordinate
Lexicographic::CoorFromIndex(coor, lex_fvol, ldims);
coor[d] += m*ldims[d];
Lexicographic::IndexFromCoor(coor, lex_r, rdims);
lex_r += lex_vec * rsites;
// LexicoFind coordinate & vector number within split lattice
tmpdata[lex_c] = alldata[lex_r];
}
}
});
}
if ( split_grid->_processors[d] > 1 ) {
split_grid->AllToAll(d,tmpdata,alldata);
tmpdata=alldata;
}
full_grid ->AllToAll(d,tmpdata,alldata);
rdims[d]/= M;
rsites /= M;
nvec *= M; // Increase nvec by subdivision factor
}
}
lsites = full_grid->lSites();
for(int v=0;v<nvector;v++){
// assert(v<full.size());
thread_loop( (int site=0;site<lsites;site++),{
// assert(v*lsites+site < alldata.size());
scalardata[site] = alldata[v*lsites+site];
});
vectorizeFromLexOrdArray(scalardata,full[v]);
}
}
NAMESPACE_END(Grid);
#endif