1
0
mirror of https://github.com/paboyle/Grid.git synced 2025-04-12 07:00:45 +01:00
Grid/Grid/qcd/action/pseudofermion/ExactOneFlavourRatio.h
Christopher Kelly fd933420c6 Imported changes from feature/gparity_HMC branch:
Added a bounds-check function for the RHMC with arbitrary power
	Added a pseudofermion action for the rational ratio with an arbitrary power and a mixed-precision variant of the same. The existing one-flavor rational ratio class now uses the general class under the hood
	To support testing of the two-flavor even-odd ratio pseudofermion, separated the functionality of generating the random field and performing the heatbath step, and added a method to obtain the pseudofermion field
	Added a new HMC runner start type: CheckpointStartReseed, which reseeds the RNG from scratch, allowing for the creation of new evolution streams from an existing checkpoint. Added log output of seeds used when the RNG is seeded.
	EOFA changes:
		To support mixed-precision inversion, generalized the class to maintain a separate solver for the L and R operators in the heatbath (separate solvers are already implemented for the other stages)
		To support mixed-precision, the action of setting the operator shift coefficients is now maintained in a virtual function. A derived class for mixed-precision solvers ensures the coefficients are applied to both the double and single-prec operators
		The ||^2 of the random source is now stored by the heatbath and compared to the initial action when it is computed. These should be equal but may differ if the rational bounds are not chosen correctly, hence serving as a useful and free test
		Fixed calculation of M_eofa (previously incomplete and #if'd out)
		Added functionality to compute M_eofa^-1 to complement the calculation of M_eofa (both are equally expensive!)
		To support testing, separated the functionality of generating the random field and performing the heatbath step, and added a method to obtain the pseudofermion field
	Added a test program which computes the G-parity force using the 1 and 2 flavor implementations and compares the result. Test supports DWF, EOFA and DSDR actions, chosen by a command line option.
	The Mobius EOFA force test now also checks the rational approximation used for the heatbath
	Added a test program for the mixed precision EOFA compared to the double-prec implementation,
	G-parity HMC test now applied GPBC in the y direction and not the t direction (GPBC in t are no longer supported) and checkpoints after every configuration
	Added a test program which computes the two-flavor G-parity action (via RHMC) with both the 1 and 2 flavor implementations and checks they agree
	Added a test program to check the implementation of M_eofa^{-1}
2022-06-22 10:27:48 -04:00

492 lines
21 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/pseudofermion/ExactOneFlavourRatio.h
Copyright (C) 2017
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
/////////////////////////////////////////////////////////////////
// Implementation of exact one flavour algorithm (EOFA) //
// using fermion classes defined in: //
// Grid/qcd/action/fermion/DomainWallEOFAFermion.h (Shamir) //
// Grid/qcd/action/fermion/MobiusEOFAFermion.h (Mobius) //
// arXiv: 1403.1683, 1706.05843 //
/////////////////////////////////////////////////////////////////
#ifndef QCD_PSEUDOFERMION_EXACT_ONE_FLAVOUR_RATIO_H
#define QCD_PSEUDOFERMION_EXACT_ONE_FLAVOUR_RATIO_H
NAMESPACE_BEGIN(Grid);
///////////////////////////////////////////////////////////////
// Exact one flavour implementation of DWF determinant ratio //
///////////////////////////////////////////////////////////////
//Note: using mixed prec CG for the heatbath solver in this action class will not work
// because the L, R operators must have their shift coefficients updated throughout the heatbath step
// You will find that the heatbath solver simply won't converge.
// To use mixed precision here use the ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction variant below
template<class Impl>
class ExactOneFlavourRatioPseudoFermionAction : public Action<typename Impl::GaugeField>
{
public:
INHERIT_IMPL_TYPES(Impl);
typedef OneFlavourRationalParams Params;
Params param;
MultiShiftFunction PowerNegHalf;
private:
bool use_heatbath_forecasting;
AbstractEOFAFermion<Impl>& Lop; // the basic LH operator
AbstractEOFAFermion<Impl>& Rop; // the basic RH operator
SchurRedBlackDiagMooeeSolve<FermionField> SolverHBL;
SchurRedBlackDiagMooeeSolve<FermionField> SolverHBR;
SchurRedBlackDiagMooeeSolve<FermionField> SolverL;
SchurRedBlackDiagMooeeSolve<FermionField> SolverR;
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverL;
SchurRedBlackDiagMooeeSolve<FermionField> DerivativeSolverR;
FermionField Phi; // the pseudofermion field for this trajectory
RealD norm2_eta; //|eta|^2 where eta is the random gaussian field used to generate the pseudofermion field
bool initial_action; //true for the first call to S after refresh, for which the identity S = |eta|^2 holds provided the rational approx is good
public:
//Used in the heatbath, refresh the shift coefficients of the L (LorR=0) or R (LorR=1) operator
virtual void heatbathRefreshShiftCoefficients(int LorR, RealD to){
AbstractEOFAFermion<Impl>&op = LorR == 0 ? Lop : Rop;
op.RefreshShiftCoefficients(to);
}
//Use the same solver for L,R in all cases
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
AbstractEOFAFermion<Impl>& _Rop,
OperatorFunction<FermionField>& CG,
Params& p,
bool use_fc=false)
: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,CG,CG,CG,CG,CG,CG,p,use_fc) {};
//Use the same solver for L,R in the heatbath but different solvers elsewhere
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
AbstractEOFAFermion<Impl>& _Rop,
OperatorFunction<FermionField>& HeatbathCG,
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
Params& p,
bool use_fc=false)
: ExactOneFlavourRatioPseudoFermionAction(_Lop,_Rop,HeatbathCG,HeatbathCG, ActionCGL, ActionCGR, DerivCGL,DerivCGR,p,use_fc) {};
//Use different solvers for L,R in all cases
ExactOneFlavourRatioPseudoFermionAction(AbstractEOFAFermion<Impl>& _Lop,
AbstractEOFAFermion<Impl>& _Rop,
OperatorFunction<FermionField>& HeatbathCGL, OperatorFunction<FermionField>& HeatbathCGR,
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
Params& p,
bool use_fc=false) :
Lop(_Lop),
Rop(_Rop),
SolverHBL(HeatbathCGL,false,true), SolverHBR(HeatbathCGR,false,true),
SolverL(ActionCGL, false, true), SolverR(ActionCGR, false, true),
DerivativeSolverL(DerivCGL, false, true), DerivativeSolverR(DerivCGR, false, true),
Phi(_Lop.FermionGrid()),
param(p),
use_heatbath_forecasting(use_fc),
initial_action(false)
{
AlgRemez remez(param.lo, param.hi, param.precision);
// MdagM^(+- 1/2)
std::cout << GridLogMessage << "Generating degree " << param.degree << " for x^(-1/2)" << std::endl;
remez.generateApprox(param.degree, 1, 2);
PowerNegHalf.Init(remez, param.tolerance, true);
};
const FermionField &getPhi() const{ return Phi; }
virtual std::string action_name() { return "ExactOneFlavourRatioPseudoFermionAction"; }
virtual std::string LogParameters() {
std::stringstream sstream;
sstream << GridLogMessage << "[" << action_name() << "] Low :" << param.lo << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] High :" << param.hi << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Max iterations :" << param.MaxIter << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Tolerance :" << param.tolerance << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Degree :" << param.degree << std::endl;
sstream << GridLogMessage << "[" << action_name() << "] Precision :" << param.precision << std::endl;
return sstream.str();
}
// Spin projection
void spProj(const FermionField& in, FermionField& out, int sign, int Ls)
{
if(sign == 1){ for(int s=0; s<Ls; ++s){ axpby_ssp_pplus(out, 0.0, in, 1.0, in, s, s); } }
else{ for(int s=0; s<Ls; ++s){ axpby_ssp_pminus(out, 0.0, in, 1.0, in, s, s); } }
}
virtual void refresh(const GaugeField &U, GridSerialRNG &sRNG, GridParallelRNG& pRNG) {
// P(eta_o) = e^{- eta_o^dag eta_o}
//
// e^{x^2/2 sig^2} => sig^2 = 0.5.
//
RealD scale = std::sqrt(0.5);
FermionField eta (Lop.FermionGrid());
gaussian(pRNG,eta); eta = eta * scale;
refresh(U,eta);
}
// EOFA heatbath: see Eqn. (29) of arXiv:1706.05843
// We generate a Gaussian noise vector \eta, and then compute
// \Phi = M_{\rm EOFA}^{-1/2} * \eta
// using a rational approximation to the inverse square root
//
// As a check of rational require \Phi^dag M_{EOFA} \Phi == eta^dag M^-1/2^dag M M^-1/2 eta = eta^dag eta
//
void refresh(const GaugeField &U, const FermionField &eta) {
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField CG_src (Lop.FermionGrid());
FermionField CG_soln (Lop.FermionGrid());
FermionField Forecast_src(Lop.FermionGrid());
std::vector<FermionField> tmp(2, Lop.FermionGrid());
// Use chronological inverter to forecast solutions across poles
std::vector<FermionField> prev_solns;
if(use_heatbath_forecasting){ prev_solns.reserve(param.degree); }
ChronoForecast<AbstractEOFAFermion<Impl>, FermionField> Forecast;
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
RealD N(PowerNegHalf.norm);
for(int k=0; k<param.degree; ++k){ N += PowerNegHalf.residues[k] / ( 1.0 + PowerNegHalf.poles[k] ); }
Phi = eta * N;
// LH terms:
// \Phi = \Phi + k \sum_{k=1}^{N_{p}} P_{-} \Omega_{-}^{\dagger} ( H(mf)
// - \gamma_{l} \Delta_{-}(mf,mb) P_{-} )^{-1} \Omega_{-} P_{-} \eta
RealD gamma_l(0.0);
spProj(eta, tmp[0], -1, Lop.Ls);
Lop.Omega(tmp[0], tmp[1], -1, 0);
G5R5(CG_src, tmp[1]);
tmp[1] = Zero();
for(int k=0; k<param.degree; ++k){
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
heatbathRefreshShiftCoefficients(0, -gamma_l);
if(use_heatbath_forecasting){ // Forecast CG guess using solutions from previous poles
Lop.Mdag(CG_src, Forecast_src);
CG_soln = Forecast(Lop, Forecast_src, prev_solns);
SolverHBL(Lop, CG_src, CG_soln);
prev_solns.push_back(CG_soln);
} else {
CG_soln = Zero(); // Just use zero as the initial guess
SolverHBL(Lop, CG_src, CG_soln);
}
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = tmp[1] + ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Lop.k ) * tmp[0];
}
Lop.Omega(tmp[1], tmp[0], -1, 1);
spProj(tmp[0], tmp[1], -1, Lop.Ls);
Phi = Phi + tmp[1];
// RH terms:
// \Phi = \Phi - k \sum_{k=1}^{N_{p}} P_{+} \Omega_{+}^{\dagger} ( H(mb)
// + \gamma_{l} \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \eta
spProj(eta, tmp[0], 1, Rop.Ls);
Rop.Omega(tmp[0], tmp[1], 1, 0);
G5R5(CG_src, tmp[1]);
tmp[1] = Zero();
if(use_heatbath_forecasting){ prev_solns.clear(); } // empirically, LH solns don't help for RH solves
for(int k=0; k<param.degree; ++k){
gamma_l = 1.0 / ( 1.0 + PowerNegHalf.poles[k] );
heatbathRefreshShiftCoefficients(1, -gamma_l*PowerNegHalf.poles[k]);
if(use_heatbath_forecasting){
Rop.Mdag(CG_src, Forecast_src);
CG_soln = Forecast(Rop, Forecast_src, prev_solns);
SolverHBR(Rop, CG_src, CG_soln);
prev_solns.push_back(CG_soln);
} else {
CG_soln = Zero();
SolverHBR(Rop, CG_src, CG_soln);
}
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = tmp[1] - ( PowerNegHalf.residues[k]*gamma_l*gamma_l*Rop.k ) * tmp[0];
}
Rop.Omega(tmp[1], tmp[0], 1, 1);
spProj(tmp[0], tmp[1], 1, Rop.Ls);
Phi = Phi + tmp[1];
// Reset shift coefficients for energy and force evals
heatbathRefreshShiftCoefficients(0, 0.0);
heatbathRefreshShiftCoefficients(1, -1.0);
//Mark that the next call to S is the first after refresh
initial_action = true;
// Bounds check
RealD EtaDagEta = norm2(eta);
norm2_eta = EtaDagEta;
// RealD PhiDagMPhi= norm2(eta);
};
void Meofa(const GaugeField& U,const FermionField &in, FermionField & out)
{
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField spProj_in(Lop.FermionGrid());
std::vector<FermionField> tmp(2, Lop.FermionGrid());
out = in;
// LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
spProj(in, spProj_in, -1, Lop.Ls);
Lop.Omega(spProj_in, tmp[0], -1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = Zero();
SolverL(Lop, tmp[1], tmp[0]);
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
Lop.Omega(tmp[1], tmp[0], -1, 1);
spProj(tmp[0], tmp[1], -1, Lop.Ls);
out = out - Lop.k * tmp[1];
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} |\Phi>
spProj(in, spProj_in, 1, Rop.Ls);
Rop.Omega(spProj_in, tmp[0], 1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = Zero();
SolverR(Rop, tmp[1], tmp[0]);
Rop.Dtilde(tmp[0], tmp[1]);
Rop.Omega(tmp[1], tmp[0], 1, 1);
spProj(tmp[0], tmp[1], 1, Rop.Ls);
out = out + Rop.k * tmp[1];
}
//Due to the structure of EOFA, it is no more expensive to compute the inverse of Meofa
//To ensure correctness we can simply reuse the heatbath code but use the rational approx
//f(x) = 1/x which corresponds to alpha_0=0, alpha_1=1, beta_1=0 => gamma_1=1
void MeofaInv(const GaugeField &U, const FermionField &in, FermionField &out) {
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField CG_src (Lop.FermionGrid());
FermionField CG_soln (Lop.FermionGrid());
std::vector<FermionField> tmp(2, Lop.FermionGrid());
// \Phi = ( \alpha_{0} + \sum_{k=1}^{N_{p}} \alpha_{l} * \gamma_{l} ) * \eta
// = 1 * \eta
out = in;
// LH terms:
// \Phi = \Phi + k \sum_{k=1}^{N_{p}} P_{-} \Omega_{-}^{\dagger} ( H(mf)
// - \gamma_{l} \Delta_{-}(mf,mb) P_{-} )^{-1} \Omega_{-} P_{-} \eta
spProj(in, tmp[0], -1, Lop.Ls);
Lop.Omega(tmp[0], tmp[1], -1, 0);
G5R5(CG_src, tmp[1]);
{
heatbathRefreshShiftCoefficients(0, -1.); //-gamma_1 = -1.
CG_soln = Zero(); // Just use zero as the initial guess
SolverHBL(Lop, CG_src, CG_soln);
Lop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = Lop.k * tmp[0];
}
Lop.Omega(tmp[1], tmp[0], -1, 1);
spProj(tmp[0], tmp[1], -1, Lop.Ls);
out = out + tmp[1];
// RH terms:
// \Phi = \Phi - k \sum_{k=1}^{N_{p}} P_{+} \Omega_{+}^{\dagger} ( H(mb)
// - \beta_l\gamma_{l} \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \eta
spProj(in, tmp[0], 1, Rop.Ls);
Rop.Omega(tmp[0], tmp[1], 1, 0);
G5R5(CG_src, tmp[1]);
{
heatbathRefreshShiftCoefficients(1, 0.); //-gamma_1 * beta_1 = 0
CG_soln = Zero();
SolverHBR(Rop, CG_src, CG_soln);
Rop.Dtilde(CG_soln, tmp[0]); // We actually solved Cayley preconditioned system: transform back
tmp[1] = - Rop.k * tmp[0];
}
Rop.Omega(tmp[1], tmp[0], 1, 1);
spProj(tmp[0], tmp[1], 1, Rop.Ls);
out = out + tmp[1];
// Reset shift coefficients for energy and force evals
heatbathRefreshShiftCoefficients(0, 0.0);
heatbathRefreshShiftCoefficients(1, -1.0);
};
// EOFA action: see Eqn. (10) of arXiv:1706.05843
virtual RealD S(const GaugeField& U)
{
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField spProj_Phi(Lop.FermionGrid());
std::vector<FermionField> tmp(2, Lop.FermionGrid());
// S = <\Phi|\Phi>
RealD action(norm2(Phi));
// LH term: S = S - k <\Phi| P_{-} \Omega_{-}^{\dagger} H(mf)^{-1} \Omega_{-} P_{-} |\Phi>
spProj(Phi, spProj_Phi, -1, Lop.Ls);
Lop.Omega(spProj_Phi, tmp[0], -1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = Zero();
SolverL(Lop, tmp[1], tmp[0]);
Lop.Dtilde(tmp[0], tmp[1]); // We actually solved Cayley preconditioned system: transform back
Lop.Omega(tmp[1], tmp[0], -1, 1);
action -= Lop.k * innerProduct(spProj_Phi, tmp[0]).real();
// RH term: S = S + k <\Phi| P_{+} \Omega_{+}^{\dagger} ( H(mb)
// - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} |\Phi>
spProj(Phi, spProj_Phi, 1, Rop.Ls);
Rop.Omega(spProj_Phi, tmp[0], 1, 0);
G5R5(tmp[1], tmp[0]);
tmp[0] = Zero();
SolverR(Rop, tmp[1], tmp[0]);
Rop.Dtilde(tmp[0], tmp[1]);
Rop.Omega(tmp[1], tmp[0], 1, 1);
action += Rop.k * innerProduct(spProj_Phi, tmp[0]).real();
if(initial_action){
//For the first call to S after refresh, S = |eta|^2. We can use this to ensure the rational approx is good
RealD diff = action - norm2_eta;
//S_init = eta^dag M^{-1/2} M M^{-1/2} eta
//S_init - eta^dag eta = eta^dag ( M^{-1/2} M M^{-1/2} - 1 ) eta
//If approximate solution
//S_init - eta^dag eta = eta^dag ( [M^{-1/2}+\delta M^{-1/2}] M [M^{-1/2}+\delta M^{-1/2}] - 1 ) eta
// \approx eta^dag ( \delta M^{-1/2} M^{1/2} + M^{1/2}\delta M^{-1/2} ) eta
// We divide out |eta|^2 to remove source scaling but the tolerance on this check should still be somewhat higher than the actual approx tolerance
RealD test = fabs(diff)/norm2_eta; //test the quality of the rational approx
std::cout << GridLogMessage << action_name() << " initial action " << action << " expect " << norm2_eta << "; diff " << diff << std::endl;
std::cout << GridLogMessage << action_name() << "[ eta^dag ( M^{-1/2} M M^{-1/2} - 1 ) eta ]/|eta^2| = " << test << " expect 0 (tol " << param.BoundsCheckTol << ")" << std::endl;
assert( ( test < param.BoundsCheckTol ) && " Initial action check failed" );
initial_action = false;
}
return action;
};
// EOFA pseudofermion force: see Eqns. (34)-(36) of arXiv:1706.05843
virtual void deriv(const GaugeField& U, GaugeField& dSdU)
{
Lop.ImportGauge(U);
Rop.ImportGauge(U);
FermionField spProj_Phi (Lop.FermionGrid());
FermionField Omega_spProj_Phi(Lop.FermionGrid());
FermionField CG_src (Lop.FermionGrid());
FermionField Chi (Lop.FermionGrid());
FermionField g5_R5_Chi (Lop.FermionGrid());
GaugeField force(Lop.GaugeGrid());
/////////////////////////////////////////////
// PAB:
// Optional single precision derivative ?
/////////////////////////////////////////////
// LH: dSdU = k \chi_{L}^{\dagger} \gamma_{5} R_{5} ( \partial_{x,\mu} D_{w} ) \chi_{L}
// \chi_{L} = H(mf)^{-1} \Omega_{-} P_{-} \Phi
spProj(Phi, spProj_Phi, -1, Lop.Ls);
Lop.Omega(spProj_Phi, Omega_spProj_Phi, -1, 0);
G5R5(CG_src, Omega_spProj_Phi);
spProj_Phi = Zero();
DerivativeSolverL(Lop, CG_src, spProj_Phi);
Lop.Dtilde(spProj_Phi, Chi);
G5R5(g5_R5_Chi, Chi);
Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
dSdU = -Lop.k * force;
// RH: dSdU = dSdU - k \chi_{R}^{\dagger} \gamma_{5} R_{5} ( \partial_{x,\mu} D_{w} ) \chi_{}
// \chi_{R} = ( H(mb) - \Delta_{+}(mf,mb) P_{+} )^{-1} \Omega_{+} P_{+} \Phi
spProj(Phi, spProj_Phi, 1, Rop.Ls);
Rop.Omega(spProj_Phi, Omega_spProj_Phi, 1, 0);
G5R5(CG_src, Omega_spProj_Phi);
spProj_Phi = Zero();
DerivativeSolverR(Rop, CG_src, spProj_Phi);
Rop.Dtilde(spProj_Phi, Chi);
G5R5(g5_R5_Chi, Chi);
Lop.MDeriv(force, g5_R5_Chi, Chi, DaggerNo);
dSdU = dSdU + Rop.k * force;
};
};
template<class ImplD, class ImplF>
class ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction : public ExactOneFlavourRatioPseudoFermionAction<ImplD>{
public:
INHERIT_IMPL_TYPES(ImplD);
typedef OneFlavourRationalParams Params;
private:
AbstractEOFAFermion<ImplF>& LopF; // the basic LH operator
AbstractEOFAFermion<ImplF>& RopF; // the basic RH operator
public:
virtual std::string action_name() { return "ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction"; }
//Used in the heatbath, refresh the shift coefficients of the L (LorR=0) or R (LorR=1) operator
virtual void heatbathRefreshShiftCoefficients(int LorR, RealD to){
AbstractEOFAFermion<ImplF> &op = LorR == 0 ? LopF : RopF;
op.RefreshShiftCoefficients(to);
this->ExactOneFlavourRatioPseudoFermionAction<ImplD>::heatbathRefreshShiftCoefficients(LorR,to);
}
ExactOneFlavourRatioMixedPrecHeatbathPseudoFermionAction(AbstractEOFAFermion<ImplF>& _LopF,
AbstractEOFAFermion<ImplF>& _RopF,
AbstractEOFAFermion<ImplD>& _LopD,
AbstractEOFAFermion<ImplD>& _RopD,
OperatorFunction<FermionField>& HeatbathCGL, OperatorFunction<FermionField>& HeatbathCGR,
OperatorFunction<FermionField>& ActionCGL, OperatorFunction<FermionField>& ActionCGR,
OperatorFunction<FermionField>& DerivCGL , OperatorFunction<FermionField>& DerivCGR,
Params& p,
bool use_fc=false) :
LopF(_LopF), RopF(_RopF), ExactOneFlavourRatioPseudoFermionAction<ImplD>(_LopD, _RopD, HeatbathCGL, HeatbathCGR, ActionCGL, ActionCGR, DerivCGL, DerivCGR, p, use_fc){}
};
NAMESPACE_END(Grid);
#endif