1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-15 18:25:37 +00:00
Grid/lib/qcd/action/fermion/MobiusEOFAFermionvec.cc

984 lines
44 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/MobiusEOFAFermionvec.cc
Copyright (C) 2017
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: David Murphy <dmurphy@phys.columbia.edu>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/MobiusEOFAFermion.h>
namespace Grid {
namespace QCD {
/*
* Dense matrix versions of routines
*/
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInv(const FermionField& psi, FermionField& chi)
{
this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInv_shift(const FermionField& psi, FermionField& chi)
{
this->MooeeInternal(psi, chi, DaggerNo, InverseYes);
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInvDag(const FermionField& psi, FermionField& chi)
{
this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
}
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInvDag_shift(const FermionField& psi, FermionField& chi)
{
this->MooeeInternal(psi, chi, DaggerYes, InverseYes);
}
template<class Impl>
void MobiusEOFAFermion<Impl>::M5D(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
{
GridBase* grid = psi._grid;
int Ls = this->Ls;
int LLs = grid->_rdimensions[0];
const int nsimd = Simd::Nsimd();
Vector<iSinglet<Simd>> u(LLs);
Vector<iSinglet<Simd>> l(LLs);
Vector<iSinglet<Simd>> d(LLs);
assert(Ls/LLs == nsimd);
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard = psi.checkerboard;
// just directly address via type pun
typedef typename Simd::scalar_type scalar_type;
scalar_type* u_p = (scalar_type*) &u[0];
scalar_type* l_p = (scalar_type*) &l[0];
scalar_type* d_p = (scalar_type*) &d[0];
for(int o=0; o<LLs; o++){ // outer
for(int i=0; i<nsimd; i++){ //inner
int s = o + i*LLs;
int ss = o*nsimd + i;
u_p[ss] = upper[s];
l_p[ss] = lower[s];
d_p[ss] = diag[s];
}}
this->M5Dcalls++;
this->M5Dtime -= usecond();
assert(Nc == 3);
parallel_for(int ss=0; ss<grid->oSites(); ss+=LLs){ // adds LLs
#if 0
alignas(64) SiteHalfSpinor hp;
alignas(64) SiteHalfSpinor hm;
alignas(64) SiteSpinor fp;
alignas(64) SiteSpinor fm;
for(int v=0; v<LLs; v++){
int vp = (v+1)%LLs;
int vm = (v+LLs-1)%LLs;
spProj5m(hp, psi[ss+vp]);
spProj5p(hm, psi[ss+vm]);
if (vp <= v){ rotate(hp, hp, 1); }
if (vm >= v){ rotate(hm, hm, nsimd-1); }
hp = 0.5*hp;
hm = 0.5*hm;
spRecon5m(fp, hp);
spRecon5p(fm, hm);
chi[ss+v] = d[v]*phi[ss+v];
chi[ss+v] = chi[ss+v] + u[v]*fp;
chi[ss+v] = chi[ss+v] + l[v]*fm;
}
#else
for(int v=0; v<LLs; v++){
vprefetch(psi[ss+v+LLs]);
int vp = (v == LLs-1) ? 0 : v+1;
int vm = (v == 0) ? LLs-1 : v-1;
Simd hp_00 = psi[ss+vp]()(2)(0);
Simd hp_01 = psi[ss+vp]()(2)(1);
Simd hp_02 = psi[ss+vp]()(2)(2);
Simd hp_10 = psi[ss+vp]()(3)(0);
Simd hp_11 = psi[ss+vp]()(3)(1);
Simd hp_12 = psi[ss+vp]()(3)(2);
Simd hm_00 = psi[ss+vm]()(0)(0);
Simd hm_01 = psi[ss+vm]()(0)(1);
Simd hm_02 = psi[ss+vm]()(0)(2);
Simd hm_10 = psi[ss+vm]()(1)(0);
Simd hm_11 = psi[ss+vm]()(1)(1);
Simd hm_12 = psi[ss+vm]()(1)(2);
if(vp <= v){
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
}
if(vm >= v){
hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
}
// Can force these to real arithmetic and save 2x.
Simd p_00 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00);
Simd p_01 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01);
Simd p_02 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02);
Simd p_10 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10);
Simd p_11 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11);
Simd p_12 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12);
Simd p_20 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00);
Simd p_21 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01);
Simd p_22 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02);
Simd p_30 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10);
Simd p_31 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11);
Simd p_32 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12);
vstream(chi[ss+v]()(0)(0), p_00);
vstream(chi[ss+v]()(0)(1), p_01);
vstream(chi[ss+v]()(0)(2), p_02);
vstream(chi[ss+v]()(1)(0), p_10);
vstream(chi[ss+v]()(1)(1), p_11);
vstream(chi[ss+v]()(1)(2), p_12);
vstream(chi[ss+v]()(2)(0), p_20);
vstream(chi[ss+v]()(2)(1), p_21);
vstream(chi[ss+v]()(2)(2), p_22);
vstream(chi[ss+v]()(3)(0), p_30);
vstream(chi[ss+v]()(3)(1), p_31);
vstream(chi[ss+v]()(3)(2), p_32);
}
#endif
}
this->M5Dtime += usecond();
}
template<class Impl>
void MobiusEOFAFermion<Impl>::M5D_shift(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
std::vector<Coeff_t>& shift_coeffs)
{
#if 0
this->M5D(psi, phi, chi, lower, diag, upper);
// FIXME: possible gain from vectorizing shift operation as well?
Coeff_t one(1.0);
int Ls = this->Ls;
for(int s=0; s<Ls; s++){
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, shift_coeffs[s], psi, s, Ls-1); }
else{ axpby_ssp_pminus(chi, one, chi, shift_coeffs[s], psi, s, 0); }
}
#else
GridBase* grid = psi._grid;
int Ls = this->Ls;
int LLs = grid->_rdimensions[0];
const int nsimd = Simd::Nsimd();
Vector<iSinglet<Simd>> u(LLs);
Vector<iSinglet<Simd>> l(LLs);
Vector<iSinglet<Simd>> d(LLs);
Vector<iSinglet<Simd>> s(LLs);
assert(Ls/LLs == nsimd);
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard = psi.checkerboard;
// just directly address via type pun
typedef typename Simd::scalar_type scalar_type;
scalar_type* u_p = (scalar_type*) &u[0];
scalar_type* l_p = (scalar_type*) &l[0];
scalar_type* d_p = (scalar_type*) &d[0];
scalar_type* s_p = (scalar_type*) &s[0];
for(int o=0; o<LLs; o++){ // outer
for(int i=0; i<nsimd; i++){ //inner
int s = o + i*LLs;
int ss = o*nsimd + i;
u_p[ss] = upper[s];
l_p[ss] = lower[s];
d_p[ss] = diag[s];
s_p[ss] = shift_coeffs[s];
}}
this->M5Dcalls++;
this->M5Dtime -= usecond();
assert(Nc == 3);
parallel_for(int ss=0; ss<grid->oSites(); ss+=LLs){ // adds LLs
int vs = (this->pm == 1) ? LLs-1 : 0;
Simd hs_00 = (this->pm == 1) ? psi[ss+vs]()(2)(0) : psi[ss+vs]()(0)(0);
Simd hs_01 = (this->pm == 1) ? psi[ss+vs]()(2)(1) : psi[ss+vs]()(0)(1);
Simd hs_02 = (this->pm == 1) ? psi[ss+vs]()(2)(2) : psi[ss+vs]()(0)(2);
Simd hs_10 = (this->pm == 1) ? psi[ss+vs]()(3)(0) : psi[ss+vs]()(1)(0);
Simd hs_11 = (this->pm == 1) ? psi[ss+vs]()(3)(1) : psi[ss+vs]()(1)(1);
Simd hs_12 = (this->pm == 1) ? psi[ss+vs]()(3)(2) : psi[ss+vs]()(1)(2);
for(int v=0; v<LLs; v++){
vprefetch(psi[ss+v+LLs]);
int vp = (v == LLs-1) ? 0 : v+1;
int vm = (v == 0) ? LLs-1 : v-1;
Simd hp_00 = psi[ss+vp]()(2)(0);
Simd hp_01 = psi[ss+vp]()(2)(1);
Simd hp_02 = psi[ss+vp]()(2)(2);
Simd hp_10 = psi[ss+vp]()(3)(0);
Simd hp_11 = psi[ss+vp]()(3)(1);
Simd hp_12 = psi[ss+vp]()(3)(2);
Simd hm_00 = psi[ss+vm]()(0)(0);
Simd hm_01 = psi[ss+vm]()(0)(1);
Simd hm_02 = psi[ss+vm]()(0)(2);
Simd hm_10 = psi[ss+vm]()(1)(0);
Simd hm_11 = psi[ss+vm]()(1)(1);
Simd hm_12 = psi[ss+vm]()(1)(2);
if(vp <= v){
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
}
if(this->pm == 1 && vs <= v){
hs_00.v = Optimization::Rotate::tRotate<2>(hs_00.v);
hs_01.v = Optimization::Rotate::tRotate<2>(hs_01.v);
hs_02.v = Optimization::Rotate::tRotate<2>(hs_02.v);
hs_10.v = Optimization::Rotate::tRotate<2>(hs_10.v);
hs_11.v = Optimization::Rotate::tRotate<2>(hs_11.v);
hs_12.v = Optimization::Rotate::tRotate<2>(hs_12.v);
}
if(vm >= v){
hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
}
if(this->pm == -1 && vs >= v){
hs_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_00.v);
hs_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_01.v);
hs_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_02.v);
hs_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_10.v);
hs_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_11.v);
hs_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_12.v);
}
// Can force these to real arithmetic and save 2x.
Simd p_00 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_00);
Simd p_01 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_01);
Simd p_02 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_02);
Simd p_10 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_10);
Simd p_11 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_11);
Simd p_12 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_12);
Simd p_20 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_00)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00);
Simd p_21 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_01)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01);
Simd p_22 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_02)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02);
Simd p_30 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_10)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10);
Simd p_31 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_11)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11);
Simd p_32 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_12)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12);
vstream(chi[ss+v]()(0)(0), p_00);
vstream(chi[ss+v]()(0)(1), p_01);
vstream(chi[ss+v]()(0)(2), p_02);
vstream(chi[ss+v]()(1)(0), p_10);
vstream(chi[ss+v]()(1)(1), p_11);
vstream(chi[ss+v]()(1)(2), p_12);
vstream(chi[ss+v]()(2)(0), p_20);
vstream(chi[ss+v]()(2)(1), p_21);
vstream(chi[ss+v]()(2)(2), p_22);
vstream(chi[ss+v]()(3)(0), p_30);
vstream(chi[ss+v]()(3)(1), p_31);
vstream(chi[ss+v]()(3)(2), p_32);
}
}
this->M5Dtime += usecond();
#endif
}
template<class Impl>
void MobiusEOFAFermion<Impl>::M5Ddag(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper)
{
GridBase* grid = psi._grid;
int Ls = this->Ls;
int LLs = grid->_rdimensions[0];
int nsimd = Simd::Nsimd();
Vector<iSinglet<Simd>> u(LLs);
Vector<iSinglet<Simd>> l(LLs);
Vector<iSinglet<Simd>> d(LLs);
assert(Ls/LLs == nsimd);
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard = psi.checkerboard;
// just directly address via type pun
typedef typename Simd::scalar_type scalar_type;
scalar_type* u_p = (scalar_type*) &u[0];
scalar_type* l_p = (scalar_type*) &l[0];
scalar_type* d_p = (scalar_type*) &d[0];
for(int o=0; o<LLs; o++){ // outer
for(int i=0; i<nsimd; i++){ //inner
int s = o + i*LLs;
int ss = o*nsimd + i;
u_p[ss] = upper[s];
l_p[ss] = lower[s];
d_p[ss] = diag[s];
}}
this->M5Dcalls++;
this->M5Dtime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=LLs){ // adds LLs
#if 0
alignas(64) SiteHalfSpinor hp;
alignas(64) SiteHalfSpinor hm;
alignas(64) SiteSpinor fp;
alignas(64) SiteSpinor fm;
for(int v=0; v<LLs; v++){
int vp = (v+1)%LLs;
int vm = (v+LLs-1)%LLs;
spProj5p(hp, psi[ss+vp]);
spProj5m(hm, psi[ss+vm]);
if(vp <= v){ rotate(hp, hp, 1); }
if(vm >= v){ rotate(hm, hm, nsimd-1); }
hp = hp*0.5;
hm = hm*0.5;
spRecon5p(fp, hp);
spRecon5m(fm, hm);
chi[ss+v] = d[v]*phi[ss+v]+u[v]*fp;
chi[ss+v] = chi[ss+v] +l[v]*fm;
}
#else
for(int v=0; v<LLs; v++){
vprefetch(psi[ss+v+LLs]);
int vp = (v == LLs-1) ? 0 : v+1;
int vm = (v == 0 ) ? LLs-1 : v-1;
Simd hp_00 = psi[ss+vp]()(0)(0);
Simd hp_01 = psi[ss+vp]()(0)(1);
Simd hp_02 = psi[ss+vp]()(0)(2);
Simd hp_10 = psi[ss+vp]()(1)(0);
Simd hp_11 = psi[ss+vp]()(1)(1);
Simd hp_12 = psi[ss+vp]()(1)(2);
Simd hm_00 = psi[ss+vm]()(2)(0);
Simd hm_01 = psi[ss+vm]()(2)(1);
Simd hm_02 = psi[ss+vm]()(2)(2);
Simd hm_10 = psi[ss+vm]()(3)(0);
Simd hm_11 = psi[ss+vm]()(3)(1);
Simd hm_12 = psi[ss+vm]()(3)(2);
if (vp <= v){
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
}
if(vm >= v){
hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
}
Simd p_00 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00);
Simd p_01 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01);
Simd p_02 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02);
Simd p_10 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10);
Simd p_11 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11);
Simd p_12 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12);
Simd p_20 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00);
Simd p_21 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01);
Simd p_22 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02);
Simd p_30 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10);
Simd p_31 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11);
Simd p_32 = switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12);
vstream(chi[ss+v]()(0)(0), p_00);
vstream(chi[ss+v]()(0)(1), p_01);
vstream(chi[ss+v]()(0)(2), p_02);
vstream(chi[ss+v]()(1)(0), p_10);
vstream(chi[ss+v]()(1)(1), p_11);
vstream(chi[ss+v]()(1)(2), p_12);
vstream(chi[ss+v]()(2)(0), p_20);
vstream(chi[ss+v]()(2)(1), p_21);
vstream(chi[ss+v]()(2)(2), p_22);
vstream(chi[ss+v]()(3)(0), p_30);
vstream(chi[ss+v]()(3)(1), p_31);
vstream(chi[ss+v]()(3)(2), p_32);
}
#endif
}
this->M5Dtime += usecond();
}
template<class Impl>
void MobiusEOFAFermion<Impl>::M5Ddag_shift(const FermionField& psi, const FermionField& phi,
FermionField& chi, std::vector<Coeff_t>& lower, std::vector<Coeff_t>& diag, std::vector<Coeff_t>& upper,
std::vector<Coeff_t>& shift_coeffs)
{
#if 0
this->M5Ddag(psi, phi, chi, lower, diag, upper);
// FIXME: possible gain from vectorizing shift operation as well?
Coeff_t one(1.0);
int Ls = this->Ls;
for(int s=0; s<Ls; s++){
if(this->pm == 1){ axpby_ssp_pplus(chi, one, chi, shift_coeffs[s], psi, Ls-1, s); }
else{ axpby_ssp_pminus(chi, one, chi, shift_coeffs[s], psi, 0, s); }
}
#else
GridBase* grid = psi._grid;
int Ls = this->Ls;
int LLs = grid->_rdimensions[0];
int nsimd = Simd::Nsimd();
Vector<iSinglet<Simd>> u(LLs);
Vector<iSinglet<Simd>> l(LLs);
Vector<iSinglet<Simd>> d(LLs);
Vector<iSinglet<Simd>> s(LLs);
assert(Ls/LLs == nsimd);
assert(phi.checkerboard == psi.checkerboard);
chi.checkerboard = psi.checkerboard;
// just directly address via type pun
typedef typename Simd::scalar_type scalar_type;
scalar_type* u_p = (scalar_type*) &u[0];
scalar_type* l_p = (scalar_type*) &l[0];
scalar_type* d_p = (scalar_type*) &d[0];
scalar_type* s_p = (scalar_type*) &s[0];
for(int o=0; o<LLs; o++){ // outer
for(int i=0; i<nsimd; i++){ //inner
int s = o + i*LLs;
int ss = o*nsimd + i;
u_p[ss] = upper[s];
l_p[ss] = lower[s];
d_p[ss] = diag[s];
s_p[ss] = shift_coeffs[s];
}}
this->M5Dcalls++;
this->M5Dtime -= usecond();
parallel_for(int ss=0; ss<grid->oSites(); ss+=LLs){ // adds LLs
int vs = (this->pm == 1) ? LLs-1 : 0;
Simd hs_00 = (this->pm == 1) ? psi[ss+vs]()(0)(0) : psi[ss+vs]()(2)(0);
Simd hs_01 = (this->pm == 1) ? psi[ss+vs]()(0)(1) : psi[ss+vs]()(2)(1);
Simd hs_02 = (this->pm == 1) ? psi[ss+vs]()(0)(2) : psi[ss+vs]()(2)(2);
Simd hs_10 = (this->pm == 1) ? psi[ss+vs]()(1)(0) : psi[ss+vs]()(3)(0);
Simd hs_11 = (this->pm == 1) ? psi[ss+vs]()(1)(1) : psi[ss+vs]()(3)(1);
Simd hs_12 = (this->pm == 1) ? psi[ss+vs]()(1)(2) : psi[ss+vs]()(3)(2);
for(int v=0; v<LLs; v++){
vprefetch(psi[ss+v+LLs]);
int vp = (v == LLs-1) ? 0 : v+1;
int vm = (v == 0 ) ? LLs-1 : v-1;
Simd hp_00 = psi[ss+vp]()(0)(0);
Simd hp_01 = psi[ss+vp]()(0)(1);
Simd hp_02 = psi[ss+vp]()(0)(2);
Simd hp_10 = psi[ss+vp]()(1)(0);
Simd hp_11 = psi[ss+vp]()(1)(1);
Simd hp_12 = psi[ss+vp]()(1)(2);
Simd hm_00 = psi[ss+vm]()(2)(0);
Simd hm_01 = psi[ss+vm]()(2)(1);
Simd hm_02 = psi[ss+vm]()(2)(2);
Simd hm_10 = psi[ss+vm]()(3)(0);
Simd hm_11 = psi[ss+vm]()(3)(1);
Simd hm_12 = psi[ss+vm]()(3)(2);
if (vp <= v){
hp_00.v = Optimization::Rotate::tRotate<2>(hp_00.v);
hp_01.v = Optimization::Rotate::tRotate<2>(hp_01.v);
hp_02.v = Optimization::Rotate::tRotate<2>(hp_02.v);
hp_10.v = Optimization::Rotate::tRotate<2>(hp_10.v);
hp_11.v = Optimization::Rotate::tRotate<2>(hp_11.v);
hp_12.v = Optimization::Rotate::tRotate<2>(hp_12.v);
}
if(this->pm == 1 && vs <= v){
hs_00.v = Optimization::Rotate::tRotate<2>(hs_00.v);
hs_01.v = Optimization::Rotate::tRotate<2>(hs_01.v);
hs_02.v = Optimization::Rotate::tRotate<2>(hs_02.v);
hs_10.v = Optimization::Rotate::tRotate<2>(hs_10.v);
hs_11.v = Optimization::Rotate::tRotate<2>(hs_11.v);
hs_12.v = Optimization::Rotate::tRotate<2>(hs_12.v);
}
if(vm >= v){
hm_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_00.v);
hm_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_01.v);
hm_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_02.v);
hm_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_10.v);
hm_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_11.v);
hm_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hm_12.v);
}
if(this->pm == -1 && vs >= v){
hs_00.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_00.v);
hs_01.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_01.v);
hs_02.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_02.v);
hs_10.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_10.v);
hs_11.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_11.v);
hs_12.v = Optimization::Rotate::tRotate<2*Simd::Nsimd()-2>(hs_12.v);
}
Simd p_00 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_00)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_00);
Simd p_01 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_01)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_01);
Simd p_02 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_02)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(0)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_02);
Simd p_10 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_10)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(0)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_10);
Simd p_11 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_11)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(1)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_11);
Simd p_12 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_12)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(1)(2)) + switcheroo<Coeff_t>::mult(u[v]()()(), hp_12);
Simd p_20 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_00)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_00);
Simd p_21 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_01)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_01);
Simd p_22 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(2)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_02)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_02);
Simd p_30 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(0)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_10)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_10);
Simd p_31 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(1)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_11)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_11);
Simd p_32 = (this->pm == 1) ? switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12)
: switcheroo<Coeff_t>::mult(d[v]()()(), phi[ss+v]()(3)(2)) + switcheroo<Coeff_t>::mult(l[v]()()(), hm_12)
+ switcheroo<Coeff_t>::mult(s[v]()()(), hs_12);
vstream(chi[ss+v]()(0)(0), p_00);
vstream(chi[ss+v]()(0)(1), p_01);
vstream(chi[ss+v]()(0)(2), p_02);
vstream(chi[ss+v]()(1)(0), p_10);
vstream(chi[ss+v]()(1)(1), p_11);
vstream(chi[ss+v]()(1)(2), p_12);
vstream(chi[ss+v]()(2)(0), p_20);
vstream(chi[ss+v]()(2)(1), p_21);
vstream(chi[ss+v]()(2)(2), p_22);
vstream(chi[ss+v]()(3)(0), p_30);
vstream(chi[ss+v]()(3)(1), p_31);
vstream(chi[ss+v]()(3)(2), p_32);
}
}
this->M5Dtime += usecond();
#endif
}
#ifdef AVX512
#include<simd/Intel512common.h>
#include<simd/Intel512avx.h>
#include<simd/Intel512single.h>
#endif
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInternalAsm(const FermionField& psi, FermionField& chi,
int LLs, int site, Vector<iSinglet<Simd> >& Matp, Vector<iSinglet<Simd> >& Matm)
{
#ifndef AVX512
{
SiteHalfSpinor BcastP;
SiteHalfSpinor BcastM;
SiteHalfSpinor SiteChiP;
SiteHalfSpinor SiteChiM;
// Ls*Ls * 2 * 12 * vol flops
for(int s1=0; s1<LLs; s1++){
for(int s2=0; s2<LLs; s2++){
for(int l=0; l < Simd::Nsimd(); l++){ // simd lane
int s = s2 + l*LLs;
int lex = s2 + LLs*site;
if( s2==0 && l==0 ){
SiteChiP=zero;
SiteChiM=zero;
}
for(int sp=0; sp<2; sp++){
for(int co=0; co<Nc; co++){
vbroadcast(BcastP()(sp)(co), psi[lex]()(sp)(co), l);
}}
for(int sp=0; sp<2; sp++){
for(int co=0; co<Nc; co++){
vbroadcast(BcastM()(sp)(co), psi[lex]()(sp+2)(co), l);
}}
for(int sp=0; sp<2; sp++){
for(int co=0; co<Nc; co++){
SiteChiP()(sp)(co) = real_madd(Matp[LLs*s+s1]()()(), BcastP()(sp)(co), SiteChiP()(sp)(co)); // 1100 us.
SiteChiM()(sp)(co) = real_madd(Matm[LLs*s+s1]()()(), BcastM()(sp)(co), SiteChiM()(sp)(co)); // each found by commenting out
}}
}}
{
int lex = s1 + LLs*site;
for(int sp=0; sp<2; sp++){
for(int co=0; co<Nc; co++){
vstream(chi[lex]()(sp)(co), SiteChiP()(sp)(co));
vstream(chi[lex]()(sp+2)(co), SiteChiM()(sp)(co));
}}
}
}
}
#else
{
// pointers
// MASK_REGS;
#define Chi_00 %%zmm1
#define Chi_01 %%zmm2
#define Chi_02 %%zmm3
#define Chi_10 %%zmm4
#define Chi_11 %%zmm5
#define Chi_12 %%zmm6
#define Chi_20 %%zmm7
#define Chi_21 %%zmm8
#define Chi_22 %%zmm9
#define Chi_30 %%zmm10
#define Chi_31 %%zmm11
#define Chi_32 %%zmm12
#define BCAST0 %%zmm13
#define BCAST1 %%zmm14
#define BCAST2 %%zmm15
#define BCAST3 %%zmm16
#define BCAST4 %%zmm17
#define BCAST5 %%zmm18
#define BCAST6 %%zmm19
#define BCAST7 %%zmm20
#define BCAST8 %%zmm21
#define BCAST9 %%zmm22
#define BCAST10 %%zmm23
#define BCAST11 %%zmm24
int incr = LLs*LLs*sizeof(iSinglet<Simd>);
for(int s1=0; s1<LLs; s1++){
for(int s2=0; s2<LLs; s2++){
int lex = s2 + LLs*site;
uint64_t a0 = (uint64_t) &Matp[LLs*s2+s1]; // should be cacheable
uint64_t a1 = (uint64_t) &Matm[LLs*s2+s1];
uint64_t a2 = (uint64_t) &psi[lex];
for(int l=0; l<Simd::Nsimd(); l++){ // simd lane
if((s2+l)==0) {
asm(
VPREFETCH1(0,%2) VPREFETCH1(0,%1)
VPREFETCH1(12,%2) VPREFETCH1(13,%2)
VPREFETCH1(14,%2) VPREFETCH1(15,%2)
VBCASTCDUP(0,%2,BCAST0)
VBCASTCDUP(1,%2,BCAST1)
VBCASTCDUP(2,%2,BCAST2)
VBCASTCDUP(3,%2,BCAST3)
VBCASTCDUP(4,%2,BCAST4) VMULMEM(0,%0,BCAST0,Chi_00)
VBCASTCDUP(5,%2,BCAST5) VMULMEM(0,%0,BCAST1,Chi_01)
VBCASTCDUP(6,%2,BCAST6) VMULMEM(0,%0,BCAST2,Chi_02)
VBCASTCDUP(7,%2,BCAST7) VMULMEM(0,%0,BCAST3,Chi_10)
VBCASTCDUP(8,%2,BCAST8) VMULMEM(0,%0,BCAST4,Chi_11)
VBCASTCDUP(9,%2,BCAST9) VMULMEM(0,%0,BCAST5,Chi_12)
VBCASTCDUP(10,%2,BCAST10) VMULMEM(0,%1,BCAST6,Chi_20)
VBCASTCDUP(11,%2,BCAST11) VMULMEM(0,%1,BCAST7,Chi_21)
VMULMEM(0,%1,BCAST8,Chi_22)
VMULMEM(0,%1,BCAST9,Chi_30)
VMULMEM(0,%1,BCAST10,Chi_31)
VMULMEM(0,%1,BCAST11,Chi_32)
: : "r" (a0), "r" (a1), "r" (a2) );
} else {
asm(
VBCASTCDUP(0,%2,BCAST0) VMADDMEM(0,%0,BCAST0,Chi_00)
VBCASTCDUP(1,%2,BCAST1) VMADDMEM(0,%0,BCAST1,Chi_01)
VBCASTCDUP(2,%2,BCAST2) VMADDMEM(0,%0,BCAST2,Chi_02)
VBCASTCDUP(3,%2,BCAST3) VMADDMEM(0,%0,BCAST3,Chi_10)
VBCASTCDUP(4,%2,BCAST4) VMADDMEM(0,%0,BCAST4,Chi_11)
VBCASTCDUP(5,%2,BCAST5) VMADDMEM(0,%0,BCAST5,Chi_12)
VBCASTCDUP(6,%2,BCAST6) VMADDMEM(0,%1,BCAST6,Chi_20)
VBCASTCDUP(7,%2,BCAST7) VMADDMEM(0,%1,BCAST7,Chi_21)
VBCASTCDUP(8,%2,BCAST8) VMADDMEM(0,%1,BCAST8,Chi_22)
VBCASTCDUP(9,%2,BCAST9) VMADDMEM(0,%1,BCAST9,Chi_30)
VBCASTCDUP(10,%2,BCAST10) VMADDMEM(0,%1,BCAST10,Chi_31)
VBCASTCDUP(11,%2,BCAST11) VMADDMEM(0,%1,BCAST11,Chi_32)
: : "r" (a0), "r" (a1), "r" (a2) );
}
a0 = a0 + incr;
a1 = a1 + incr;
a2 = a2 + sizeof(typename Simd::scalar_type);
}
}
{
int lexa = s1+LLs*site;
asm (
VSTORE(0,%0,Chi_00) VSTORE(1 ,%0,Chi_01) VSTORE(2 ,%0,Chi_02)
VSTORE(3,%0,Chi_10) VSTORE(4 ,%0,Chi_11) VSTORE(5 ,%0,Chi_12)
VSTORE(6,%0,Chi_20) VSTORE(7 ,%0,Chi_21) VSTORE(8 ,%0,Chi_22)
VSTORE(9,%0,Chi_30) VSTORE(10,%0,Chi_31) VSTORE(11,%0,Chi_32)
: : "r" ((uint64_t)&chi[lexa]) : "memory" );
}
}
}
#undef Chi_00
#undef Chi_01
#undef Chi_02
#undef Chi_10
#undef Chi_11
#undef Chi_12
#undef Chi_20
#undef Chi_21
#undef Chi_22
#undef Chi_30
#undef Chi_31
#undef Chi_32
#undef BCAST0
#undef BCAST1
#undef BCAST2
#undef BCAST3
#undef BCAST4
#undef BCAST5
#undef BCAST6
#undef BCAST7
#undef BCAST8
#undef BCAST9
#undef BCAST10
#undef BCAST11
#endif
};
// Z-mobius version
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInternalZAsm(const FermionField& psi, FermionField& chi,
int LLs, int site, Vector<iSinglet<Simd> >& Matp, Vector<iSinglet<Simd> >& Matm)
{
std::cout << "Error: zMobius not implemented for EOFA" << std::endl;
exit(-1);
};
template<class Impl>
void MobiusEOFAFermion<Impl>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv)
{
int Ls = this->Ls;
int LLs = psi._grid->_rdimensions[0];
int vol = psi._grid->oSites()/LLs;
chi.checkerboard = psi.checkerboard;
Vector<iSinglet<Simd>> Matp;
Vector<iSinglet<Simd>> Matm;
Vector<iSinglet<Simd>>* _Matp;
Vector<iSinglet<Simd>>* _Matm;
// MooeeInternalCompute(dag,inv,Matp,Matm);
if(inv && dag){
_Matp = &this->MatpInvDag;
_Matm = &this->MatmInvDag;
}
if(inv && (!dag)){
_Matp = &this->MatpInv;
_Matm = &this->MatmInv;
}
if(!inv){
MooeeInternalCompute(dag, inv, Matp, Matm);
_Matp = &Matp;
_Matm = &Matm;
}
assert(_Matp->size() == Ls*LLs);
this->MooeeInvCalls++;
this->MooeeInvTime -= usecond();
if(switcheroo<Coeff_t>::iscomplex()){
parallel_for(auto site=0; site<vol; site++){
MooeeInternalZAsm(psi, chi, LLs, site, *_Matp, *_Matm);
}
} else {
parallel_for(auto site=0; site<vol; site++){
MooeeInternalAsm(psi, chi, LLs, site, *_Matp, *_Matm);
}
}
this->MooeeInvTime += usecond();
}
#ifdef MOBIUS_EOFA_DPERP_VEC
INSTANTIATE_DPERP_MOBIUS_EOFA(DomainWallVec5dImplD);
INSTANTIATE_DPERP_MOBIUS_EOFA(DomainWallVec5dImplF);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZDomainWallVec5dImplD);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZDomainWallVec5dImplF);
INSTANTIATE_DPERP_MOBIUS_EOFA(DomainWallVec5dImplDF);
INSTANTIATE_DPERP_MOBIUS_EOFA(DomainWallVec5dImplFH);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZDomainWallVec5dImplDF);
INSTANTIATE_DPERP_MOBIUS_EOFA(ZDomainWallVec5dImplFH);
template void MobiusEOFAFermion<DomainWallVec5dImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<DomainWallVec5dImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<ZDomainWallVec5dImplF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<ZDomainWallVec5dImplD>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<DomainWallVec5dImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<DomainWallVec5dImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<ZDomainWallVec5dImplFH>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
template void MobiusEOFAFermion<ZDomainWallVec5dImplDF>::MooeeInternal(const FermionField& psi, FermionField& chi, int dag, int inv);
#endif
}}