mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-14 09:45:36 +00:00
203 lines
6.2 KiB
C++
203 lines
6.2 KiB
C++
/*************************************************************************************
|
||
|
||
Grid physics library, www.github.com/paboyle/Grid
|
||
|
||
Source file: lib/algorithms/iterative/GeneralisedMinimalResidual.h
|
||
|
||
Copyright (C) 2015
|
||
Copyright (C) 2016
|
||
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License along
|
||
with this program; if not, write to the Free Software Foundation, Inc.,
|
||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||
|
||
See the full license in the file "LICENSE" in the top level distribution
|
||
directory
|
||
*************************************************************************************/
|
||
/* END LEGAL */
|
||
#ifndef GRID_GENERALISED_MINIMAL_RESIDUAL_H
|
||
#define GRID_GENERALISED_MINIMAL_RESIDUAL_H
|
||
|
||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
// from Y. Saad - Iterative Methods for Sparse Linear Systems, PP 172
|
||
// Compute r0 = b − Ax0 , β := ||r0||2 , and v1 := r0 /β
|
||
// For j = 1, 2, ..., m Do:
|
||
// Compute wj := Avj
|
||
// For i = 1, ..., j Do:
|
||
// hij := (wj , vi)
|
||
// wj := wj − hij vi
|
||
// EndDo
|
||
// hj+1,j = ||wj||2 . If hj+1,j = 0 set m := j and go to HERE
|
||
// vj+1 = wj /hj+1,j
|
||
// EndDo
|
||
// Define the (m + 1) × m Hessenberg matrix H̄m = {hij}1≤i≤m+1,1≤j≤m. [HERE]
|
||
// Compute ym the minimizer of ||βe1 − H̄m y||2 and xm = x0 + Vm ym.
|
||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
||
// want to solve Ax = b -> A = LinOp, psi = x, b = src
|
||
|
||
namespace Grid
|
||
{
|
||
template< class Field >
|
||
class GeneralisedMinimalResidual : public OperatorFunction< Field >
|
||
{
|
||
public:
|
||
bool ErrorOnNoConverge; // Throw an assert when GMRES fails to converge,
|
||
// defaults to True.
|
||
RealD Tolerance;
|
||
Integer MaxIterations;
|
||
Integer IterationsToComplete; // Number of iterations the GMRES took to
|
||
// finish. Filled in upon completion
|
||
|
||
GeneralisedMinimalResidual( RealD tol,
|
||
Integer maxit,
|
||
bool err_on_no_conv = true )
|
||
: Tolerance( tol )
|
||
, MaxIterations( maxit )
|
||
, ErrorOnNoConverge( err_on_no_conv ){};
|
||
|
||
// want to solve Ax = b -> A = LinOp, psi = x, b = src
|
||
|
||
void operator()( LinearOperatorBase< Field > &LinOp,
|
||
const Field & src,
|
||
Field & psi )
|
||
{
|
||
std::cout << GridLogMessage
|
||
<< "GeneralisedMinimalResidual: Start of operator()"
|
||
<< std::endl;
|
||
psi.checkerboard = src.checkerboard;
|
||
conformable( psi, src );
|
||
|
||
Field r( src );
|
||
Field mmv( src );
|
||
|
||
std::vector< Field > v( MaxIterations + 1, src );
|
||
|
||
RealD beta{};
|
||
RealD b{};
|
||
RealD d{};
|
||
|
||
Eigen::MatrixXcd H
|
||
= Eigen::MatrixXcd::Zero( MaxIterations + 1, MaxIterations );
|
||
|
||
// Compute r0 = b − Ax0 , β := ||r0||2 , and v1 := r0 /β
|
||
LinOp.Op( psi, mmv );
|
||
|
||
r = src - mmv;
|
||
beta = norm2( r );
|
||
V[ 0 ] = ( 1 / beta ) * r;
|
||
|
||
for( auto j = 0; j < MaxIterations; ++j )
|
||
{
|
||
LinOp.Op( V[ j ], mmv );
|
||
|
||
for( auto i = 0; i < j; ++i )
|
||
{
|
||
std::cout
|
||
<< GridLogMessage
|
||
<< "GeneralisedMinimalResidual: End of inner iteration "
|
||
<< i << std::endl;
|
||
H( i, j ) = innerProduct( mmv, v[ i ] );
|
||
mmv = mmv - H( i, j ) * V[ i ];
|
||
}
|
||
|
||
H( j + 1, j ) = norm2( mmv );
|
||
|
||
std::cout << GridLogMessage << "GeneralisedMinimalResidual: H"
|
||
<< j + 1 << "," << j << "= " << H( j + 1, j )
|
||
<< std::endl;
|
||
if( H( j + 1, j ) == 0. )
|
||
{
|
||
IterationsToComplete = j;
|
||
break;
|
||
}
|
||
|
||
V[ j + 1 ] = ( 1. / H( j + 1, j ) ) * mmv;
|
||
std::cout << GridLogMessage
|
||
<< "GeneralisedMinimalResidual: End of outer iteration "
|
||
<< j << std::endl;
|
||
}
|
||
std::cout << GridLogMessage
|
||
<< "GeneralisedMinimalResidual: End of operator()"
|
||
<< std::endl;
|
||
}
|
||
};
|
||
}
|
||
#endif
|
||
|
||
// Note: The DD-αAMG codebase turns around the Hessenberg matrix
|
||
|
||
void arnoldiStep()
|
||
{
|
||
w = D * V[ j ];
|
||
|
||
for( auto i = 0; i <= j; ++i )
|
||
H( i, j ) = innerProduct( V[ j + 1 ], w );
|
||
w = w - H( i, j ) * V[ i ];
|
||
|
||
H( j + 1, j ) = norm2( w );
|
||
|
||
V[ j + 1 ] = w / H( j + 1, j );
|
||
}
|
||
|
||
void qr_update_PRECISION()
|
||
{
|
||
// update QR factorization
|
||
// apply previous Givens rotation
|
||
for( auto i = 0; i < j; i++ )
|
||
{
|
||
beta = -s[ i ] * H( i, j ) + c[ i ] * H( i + 1, j );
|
||
H( i, j ) = std::conj( c[ i ] ) * H( i, j )
|
||
+ std::conj( s[ i ] ) * H( i + 1, j );
|
||
H( i + 1, j ) = beta;
|
||
}
|
||
|
||
// compute current Givens rotation
|
||
beta = sqrt( std::norm( H( j, j ) ) + std::norm( H( j, j + 1 ) ) );
|
||
s[ j ] = H( j + 1, j ) / beta;
|
||
c[ j ] = H( j, j ) / beta;
|
||
|
||
// update right column
|
||
gamma[ j + 1 ] = -s[ j ] * gamma[ j ];
|
||
gamma[ j ] = std::conj( c[ j ] ) * gamma[ j ];
|
||
|
||
// apply current Givens rotation
|
||
H( j, j ) = beta;
|
||
H( j + 1, j ) = 0;
|
||
}
|
||
|
||
// check
|
||
void compute_solution_PRECISION()
|
||
{
|
||
for( auto i = j; i >= 0; i-- )
|
||
{
|
||
y[ i ] = gamma[ i ];
|
||
for( auto k = i + 1; k <= j; k++ )
|
||
y[ i ] -= H( i, k ) * y[ k ];
|
||
y[ i ] /= H( i, i );
|
||
}
|
||
|
||
if( true ) // TODO ???
|
||
{
|
||
for( i = 0; i <= j; i++ )
|
||
x = x + V[ i ] * y[ i ];
|
||
}
|
||
else
|
||
{
|
||
x = y[ 0 ] * V[ 0 ];
|
||
for( i = 1; i <= j; i++ )
|
||
x = x + V[ i ] * y[ i ];
|
||
}
|
||
}
|