1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-15 02:05:37 +00:00
Grid/tests/solver/Test_hw_multigrid.cc
2020-06-30 16:42:03 -04:00

780 lines
24 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_dwf_hdcr.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidual.h>
//#include <Grid/algorithms/iterative/PrecGeneralisedConjugateResidualNonHermitian.h>
#include <Grid/algorithms/iterative/BiCGSTAB.h>
using namespace std;
using namespace Grid;
// TODO
//
// Coarse Grid axpby_ssp_pminus // Inherit from spProj5pm
// Coarse Grid axpby_ssp_pplus
template<class Field,class Coeff_t>
class CayleyBase : public SparseMatrixBase<Field>
{
public:
int Ls;
// protected:
RealD mass;
RealD M5;
// Save arguments to SetCoefficientsInternal
Vector<Coeff_t> _gamma;
RealD _zolo_hi;
RealD _b;
RealD _c;
// Cayley form Moebius (tanh and zolotarev)
Vector<Coeff_t> omega;
Vector<Coeff_t> bs; // S dependent coeffs
Vector<Coeff_t> cs;
Vector<Coeff_t> as;
// For preconditioning Cayley form
Vector<Coeff_t> bee;
Vector<Coeff_t> cee;
Vector<Coeff_t> aee;
Vector<Coeff_t> beo;
Vector<Coeff_t> ceo;
Vector<Coeff_t> aeo;
// LDU factorisation of the eeoo matrix
Vector<Coeff_t> lee;
Vector<Coeff_t> leem;
Vector<Coeff_t> uee;
Vector<Coeff_t> ueem;
Vector<Coeff_t> dee;
public:
CayleyBase(RealD _M5, RealD _mass, int _Ls, RealD b_, RealD c_) :
M5(_M5),
mass(_mass),
Ls(_Ls),
_b(b_),
_c(c_)
{
RealD eps = 1.0;
Approx::zolotarev_data *zdata = Approx::higham(eps,this->Ls);// eps is ignored for higham
this->SetCoefficientsTanh(zdata,1.0,0.0);
Approx::zolotarev_free(zdata);
}
/////////////////////////////////////////////////////////
// Replicates functionality
// Use a common base class approach
/////////////////////////////////////////////////////////
// Tanh
void SetCoefficientsTanh(Approx::zolotarev_data *zdata,RealD b,RealD c)
{
Vector<Coeff_t> gamma(this->Ls);
for(int s=0;s<this->Ls;s++) gamma[s] = zdata->gamma[s];
SetCoefficientsInternal(1.0,gamma,b,c);
}
//Zolo
void SetCoefficientsZolotarev(RealD zolo_hi,Approx::zolotarev_data *zdata,RealD b,RealD c)
{
Vector<Coeff_t> gamma(this->Ls);
for(int s=0;s<this->Ls;s++) gamma[s] = zdata->gamma[s];
SetCoefficientsInternal(zolo_hi,gamma,b,c);
}
//Zolo
void SetCoefficientsInternal(RealD zolo_hi,Vector<Coeff_t> & gamma,RealD b,RealD c)
{
int Ls=this->Ls;
///////////////////////////////////////////////////////////
// The Cayley coeffs (unprec)
///////////////////////////////////////////////////////////
assert(gamma.size()==Ls);
omega.resize(Ls);
bs.resize(Ls);
cs.resize(Ls);
as.resize(Ls);
double bpc = b+c;
double bmc = b-c;
_b = b;
_c = c;
_gamma = gamma; // Save the parameters so we can change mass later.
_zolo_hi= zolo_hi;
for(int i=0; i < Ls; i++){
as[i] = 1.0;
omega[i] = _gamma[i]*_zolo_hi; //NB reciprocal relative to Chroma NEF code
assert(omega[i]!=Coeff_t(0.0));
bs[i] = 0.5*(bpc/omega[i] + bmc);
cs[i] = 0.5*(bpc/omega[i] - bmc);
}
////////////////////////////////////////////////////////
// Constants for the preconditioned matrix Cayley form
////////////////////////////////////////////////////////
bee.resize(Ls);
cee.resize(Ls);
beo.resize(Ls);
ceo.resize(Ls);
for(int i=0;i<Ls;i++){
bee[i]=as[i]*(bs[i]*(4.0-this->M5) +1.0);
assert(bee[i]!=Coeff_t(0.0));
cee[i]=as[i]*(1.0-cs[i]*(4.0-this->M5));
beo[i]=as[i]*bs[i];
ceo[i]=-as[i]*cs[i];
}
aee.resize(Ls);
aeo.resize(Ls);
for(int i=0;i<Ls;i++){
aee[i]=cee[i];
aeo[i]=ceo[i];
}
//////////////////////////////////////////
// LDU decomposition of eeoo
//////////////////////////////////////////
dee.resize(Ls);
lee.resize(Ls);
leem.resize(Ls);
uee.resize(Ls);
ueem.resize(Ls);
for(int i=0;i<Ls;i++){
dee[i] = bee[i];
if ( i < Ls-1 ) {
assert(bee[i]!=Coeff_t(0.0));
assert(bee[0]!=Coeff_t(0.0));
lee[i] =-cee[i+1]/bee[i]; // sub-diag entry on the ith column
leem[i]=mass*cee[Ls-1]/bee[0];
for(int j=0;j<i;j++) {
assert(bee[j+1]!=Coeff_t(0.0));
leem[i]*= aee[j]/bee[j+1];
}
uee[i] =-aee[i]/bee[i]; // up-diag entry on the ith row
ueem[i]=mass;
for(int j=1;j<=i;j++) ueem[i]*= cee[j]/bee[j];
ueem[i]*= aee[0]/bee[0];
} else {
lee[i] =0.0;
leem[i]=0.0;
uee[i] =0.0;
ueem[i]=0.0;
}
}
{
Coeff_t delta_d=mass*cee[Ls-1];
for(int j=0;j<Ls-1;j++) {
assert(bee[j] != Coeff_t(0.0));
delta_d *= cee[j]/bee[j];
}
dee[Ls-1] += delta_d;
}
};
//////////////////////////////
// M and Mdag
//////////////////////////////
virtual void Mdiag (const Field &in, Field &out) {}
virtual void Mdir (const Field &in, Field &out,int dir, int disp){};
virtual void MdirAll (const Field &in, std::vector<Field> &out){};
virtual void DW (const Field &psi, Field &chi)=0;
virtual void DWDag (const Field &psi, Field &chi)=0;
void M (const Field &psi, Field &chi)
{
Field Din(psi.Grid());
Meooe5D(psi,Din);
DW(Din,chi);
axpby(chi,1.0,1.0,chi,psi);
M5D(psi,chi);
}
void Mdag (const Field &psi, Field &chi)
{
Field Din(psi.Grid());
DWDag(psi,Din);
MeooeDag5D(Din,chi);
M5Ddag(psi,chi);
axpby (chi,1.0,1.0,chi,psi);
}
/////////////////////////////////
// P and Pdag - might be needed
/////////////////////////////////
void P(const Field &psi, Field &chi)
{
int Ls= this->Ls;
chi=Zero();
for(int s=0;s<Ls;s++){
axpby_ssp_pminus(chi,1.0,chi,1.0,psi,s,s);
axpby_ssp_pplus (chi,1.0,chi,1.0,psi,s,(s+1)%Ls);
}
}
void Pdag(const Field &psi, Field &chi)
{
int Ls= this->Ls;
chi=Zero();
for(int s=0;s<Ls;s++){
axpby_ssp_pminus(chi,1.0,chi,1.0,psi,s,s);
axpby_ssp_pplus (chi,1.0,chi,1.0,psi,s,(s-1+Ls)%Ls);
}
}
////////////////////////////////////////////////////////
// Depends: Dw, M5D, M5Ddag, Meooe5D, MeooeDag5D,
////////////////////////////////////////////////////////
void M5D (const Field &psi, Field &chi)
{
int Ls=this->Ls;
Vector<Coeff_t> diag (Ls,1.0);
Vector<Coeff_t> upper(Ls,-1.0); upper[Ls-1]=mass;
Vector<Coeff_t> lower(Ls,-1.0); lower[0] =mass;
M5D(psi,chi,chi,lower,diag,upper);
}
void M5Ddag (const Field &psi, Field &chi)
{
int Ls=this->Ls;
Vector<Coeff_t> diag(Ls,1.0);
Vector<Coeff_t> upper(Ls,-1.0);
Vector<Coeff_t> lower(Ls,-1.0);
upper[Ls-1]=-mass*upper[Ls-1];
lower[0] =-mass*lower[0];
M5Ddag(psi,chi,chi,lower,diag,upper);
}
void Meooe5D (const Field &psi, Field &Din)
{
int Ls=this->Ls;
Vector<Coeff_t> diag = bs;
Vector<Coeff_t> upper= cs;
Vector<Coeff_t> lower= cs;
upper[Ls-1]=-mass*upper[Ls-1];
lower[0] =-mass*lower[0];
M5D(psi,psi,Din,lower,diag,upper);
}
void MeooeDag5D (const Field &psi, Field &Din)
{
int Ls=this->Ls;
Vector<Coeff_t> diag =bs;
Vector<Coeff_t> upper=cs;
Vector<Coeff_t> lower=cs;
for (int s=0;s<Ls;s++){
if ( s== 0 ) {
upper[s] = cs[s+1];
lower[s] =-mass*cs[Ls-1];
} else if ( s==(Ls-1) ) {
upper[s] =-mass*cs[0];
lower[s] = cs[s-1];
} else {
upper[s] = cs[s+1];
lower[s] = cs[s-1];
}
upper[s] = conjugate(upper[s]);
lower[s] = conjugate(lower[s]);
diag[s] = conjugate(diag[s]);
}
M5Ddag(psi,psi,Din,lower,diag,upper);
}
void M5D(const Field &psi_i,
const Field &phi_i,
Field &chi_i,
Vector<Coeff_t> &lower,
Vector<Coeff_t> &diag,
Vector<Coeff_t> &upper)
{
chi_i.Checkerboard()=psi_i.Checkerboard();
GridBase *grid=psi_i.Grid();
autoView(psi , psi_i,AcceleratorRead);
autoView(phi , phi_i,AcceleratorRead);
autoView(chi , chi_i,AcceleratorWrite);
assert(phi.Checkerboard() == psi.Checkerboard());
auto pdiag = &diag[0];
auto pupper = &upper[0];
auto plower = &lower[0];
int Ls =this->Ls;
// 10 = 3 complex mult + 2 complex add
// Flops = 10.0*(Nc*Ns) *Ls*vol (/2 for red black counting)
uint64_t nloop = grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{
uint64_t ss= sss*Ls;
typedef decltype(coalescedRead(psi[0])) spinor;
spinor tmp1, tmp2;
for(int s=0;s<Ls;s++){
uint64_t idx_u = ss+((s+1)%Ls);
uint64_t idx_l = ss+((s+Ls-1)%Ls);
spProj5m(tmp1,psi(idx_u)); // Need routines for this
spProj5p(tmp2,psi(idx_l));
coalescedWrite(chi[ss+s],pdiag[s]*phi(ss+s)+pupper[s]*tmp1+plower[s]*tmp2);
}
});
}
void M5Ddag(const Field &psi_i,
const Field &phi_i,
Field &chi_i,
Vector<Coeff_t> &lower,
Vector<Coeff_t> &diag,
Vector<Coeff_t> &upper)
{
chi_i.Checkerboard()=psi_i.Checkerboard();
GridBase *grid=psi_i.Grid();
autoView(psi , psi_i,AcceleratorRead);
autoView(phi , phi_i,AcceleratorRead);
autoView(chi , chi_i,AcceleratorWrite);
assert(phi.Checkerboard() == psi.Checkerboard());
auto pdiag = &diag[0];
auto pupper = &upper[0];
auto plower = &lower[0];
int Ls=this->Ls;
uint64_t nloop = grid->oSites()/Ls;
accelerator_for(sss,nloop,Simd::Nsimd(),{
uint64_t ss=sss*Ls;
typedef decltype(coalescedRead(psi[0])) spinor;
spinor tmp1,tmp2;
for(int s=0;s<Ls;s++){
uint64_t idx_u = ss+((s+1)%Ls);
uint64_t idx_l = ss+((s+Ls-1)%Ls);
spProj5p(tmp1,psi(idx_u));
spProj5m(tmp2,psi(idx_l));
coalescedWrite(chi[ss+s],pdiag[s]*phi(ss+s)+pupper[s]*tmp1+plower[s]*tmp2);
}
});
}
};
template<class Fobj,class CComplex,int nbasis>
class CoarseCayleyFermion : public CayleyBase< Lattice<iVector<CComplex,nbasis > > , ComplexD >
{
public:
typedef iVector<CComplex,nbasis > siteVector;
typedef Lattice<CComplex > CoarseComplexField;
typedef Lattice<siteVector> CoarseVector;
typedef Lattice<iMatrix<CComplex,nbasis > > CoarseMatrix;
typedef iMatrix<CComplex,nbasis > Cobj;
typedef Lattice< CComplex > CoarseScalar; // used for inner products on fine field
typedef Lattice<Fobj > FineField;
// Similar to the CoarseOperator but add 5D support.
Geometry geom;
GridBase *Coarse5D;
GridBase *Coarse4D;
CartesianStencil<siteVector,siteVector,int> Stencil;
CoarsenedMatrix<Fobj,CComplex,nbasis> &Dw;
GridBase * Grid(void) { return Coarse5D; }; // this is all the linalg routines need to know
CoarseCayleyFermion(GridCartesian &CoarseGrid4,
GridCartesian &CoarseGrid5,
CoarsenedMatrix<Fobj,CComplex,nbasis> &_Dw,
RealD M5, RealD mass, int Ls, RealD b, RealD c) :
CayleyBase<CoarseVector,ComplexD>(M5,mass,Ls,b,c),
Coarse4D(&CoarseGrid4),
Coarse5D(&CoarseGrid5),
Dw(_Dw),
geom(CoarseGrid4._ndimension),
Stencil( &CoarseGrid4,geom.npoint,Even,geom.directions,geom.displacements,0)
{
};
public:
////////////////////////////////////////////////
// This is specific to Coarse Grid Cayley
////////////////////////////////////////////////
void DW (const CoarseVector &in, CoarseVector &out)
{
conformable(Coarse5D,in.Grid());
conformable(in.Grid(),out.Grid());
SimpleCompressor<siteVector> compressor;
Stencil.HaloExchange(in,compressor);
autoView( in_v , in, AcceleratorRead);
autoView( out_v , out, AcceleratorWrite);
typedef LatticeView<Cobj> Aview;
Vector<Aview> AcceleratorViewContainer;
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer.push_back(Dw.A[p].View(AcceleratorRead));
Aview *Aview_p = & AcceleratorViewContainer[0];
const int Nsimd = CComplex::Nsimd();
typedef decltype(coalescedRead(in_v[0])) calcVector;
typedef decltype(coalescedRead(in_v[0](0))) calcComplex;
int osites=Grid()->oSites();
// Ls loop for2D
int Ls=this->Ls;
accelerator_for2d(sF, osites*Ls, b, nbasis, Nsimd, {
int sU = sF/Ls;
int s = sF%Ls;
calcComplex res = Zero();
calcVector nbr;
int ptype;
StencilEntry *SE;
for(int point=0;point<geom.npoint;point++){
SE=Stencil.GetEntry(ptype,point,sF);
if(SE->_is_local) {
nbr = coalescedReadPermute(in_v[SE->_offset],ptype,SE->_permute);
} else {
nbr = coalescedRead(Stencil.CommBuf()[SE->_offset]);
}
acceleratorSynchronise();
for(int bb=0;bb<nbasis;bb++) {
res = res + coalescedRead(Aview_p[point][sU](b,bb))*nbr(bb);
}
}
coalescedWrite(out_v[sF](b),res);
});
for(int p=0;p<geom.npoint;p++) AcceleratorViewContainer[p].ViewClose();
};
void DWDag (const CoarseVector &in, CoarseVector &out)
{
// Inefficient G5 hermitian use
CoarseVector tmp(Grid());
G5C(tmp, in); //There has to be a better way
DW(tmp, out);
G5C(out, out);
};
};
template<class Field> class SolverWrapper : public LinearFunction<Field> {
private:
LinearOperatorBase<Field> & _Matrix;
OperatorFunction<Field> & _Solver;
LinearFunction<Field> & _Guess;
public:
/////////////////////////////////////////////////////
// Wrap the usual normal equations trick
/////////////////////////////////////////////////////
SolverWrapper(LinearOperatorBase<Field> &Matrix,
OperatorFunction<Field> &Solver,
LinearFunction<Field> &Guess)
: _Matrix(Matrix), _Solver(Solver), _Guess(Guess) {};
void operator() (const Field &in, Field &out){
_Guess(in,out);
_Solver(_Matrix,in,out); // Mdag M out = Mdag in
}
};
// Must use a non-hermitian solver
template<class Matrix,class Field>
class PVdagMLinearOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
Matrix &_PV;
public:
PVdagMLinearOperator(Matrix &Mat,Matrix &PV): _Mat(Mat),_PV(PV){};
void OpDiag (const Field &in, Field &out) {
assert(0);
}
void OpDir (const Field &in, Field &out,int dir,int disp) {
assert(0);
}
void OpDirAll (const Field &in, std::vector<Field> &out){
assert(0);
};
void Op (const Field &in, Field &out){
Field tmp(in.Grid());
_Mat.M(in,tmp);
_PV.Mdag(tmp,out);
}
void AdjOp (const Field &in, Field &out){
Field tmp(in.Grid());
_PV.M(tmp,out);
_Mat.Mdag(in,tmp);
}
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
assert(0);
}
void HermOp(const Field &in, Field &out){
assert(0);
}
};
RealD InverseApproximation(RealD x){
return 1.0/x;
}
template<class Field,class Matrix> class ChebyshevSmoother : public LinearFunction<Field>
{
public:
typedef LinearOperatorBase<Field> FineOperator;
Matrix & _SmootherMatrix;
FineOperator & _SmootherOperator;
Chebyshev<Field> Cheby;
ChebyshevSmoother(RealD _lo,RealD _hi,int _ord, FineOperator &SmootherOperator,Matrix &SmootherMatrix) :
_SmootherOperator(SmootherOperator),
_SmootherMatrix(SmootherMatrix),
Cheby(_lo,_hi,_ord,InverseApproximation)
{};
void operator() (const Field &in, Field &out)
{
Field tmp(in.Grid());
MdagMLinearOperator<Matrix,Field> MdagMOp(_SmootherMatrix);
_SmootherOperator.AdjOp(in,tmp);
Cheby(MdagMOp,tmp,out);
}
};
template<class Field,class Matrix> class MirsSmoother : public LinearFunction<Field>
{
public:
typedef LinearOperatorBase<Field> FineOperator;
Matrix & SmootherMatrix;
FineOperator & SmootherOperator;
RealD tol;
RealD shift;
int maxit;
MirsSmoother(RealD _shift,RealD _tol,int _maxit,FineOperator &_SmootherOperator,Matrix &_SmootherMatrix) :
shift(_shift),tol(_tol),maxit(_maxit),
SmootherOperator(_SmootherOperator),
SmootherMatrix(_SmootherMatrix)
{};
void operator() (const Field &in, Field &out)
{
ZeroGuesser<Field> Guess;
ConjugateGradient<Field> CG(tol,maxit,false);
Field src(in.Grid());
ShiftedMdagMLinearOperator<SparseMatrixBase<Field>,Field> MdagMOp(SmootherMatrix,shift);
SmootherOperator.AdjOp(in,src);
Guess(src,out);
CG(MdagMOp,src,out);
}
};
#define GridLogLevel std::cout << GridLogMessage <<std::string(level,'\t')<< " Level "<<level <<" "
template<class Fobj,class CComplex,int nbasis, class CoarseSolver>
class HDCRPreconditioner : public LinearFunction< Lattice<Fobj> > {
public:
typedef Aggregation<Fobj,CComplex,nbasis> Aggregates;
typedef CoarsenedMatrix<Fobj,CComplex,nbasis> CoarseOperator;
typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseVector CoarseVector;
typedef typename Aggregation<Fobj,CComplex,nbasis>::CoarseMatrix CoarseMatrix;
typedef typename Aggregation<Fobj,CComplex,nbasis>::FineField FineField;
typedef LinearOperatorBase<FineField> FineOperator;
typedef LinearFunction <FineField> FineSmoother;
Aggregates & _Aggregates;
FineOperator & _FineOperator;
FineSmoother & _Smoother;
CoarseSolver & _CoarseSolve;
int level; void Level(int lv) {level = lv; };
HDCRPreconditioner(Aggregates &Agg,
FineOperator &Fine,
FineSmoother &Smoother,
CoarseSolver &CoarseSolve_)
: _Aggregates(Agg),
_FineOperator(Fine),
_Smoother(Smoother),
_CoarseSolve(CoarseSolve_),
level(1) { }
virtual void operator()(const FineField &in, FineField & out)
{
auto CoarseGrid = _Aggregates.CoarseGrid;
CoarseVector Csrc(CoarseGrid);
CoarseVector Csol(CoarseGrid);
FineField vec1(in.Grid());
FineField vec2(in.Grid());
double t;
// Fine Smoother
t=-usecond();
_Smoother(in,out);
t+=usecond();
GridLogLevel << "Smoother took "<< t/1000.0<< "ms" <<std::endl;
// Update the residual
_FineOperator.Op(out,vec1); sub(vec1, in ,vec1);
// Fine to Coarse
t=-usecond();
_Aggregates.ProjectToSubspace (Csrc,vec1);
t+=usecond();
GridLogLevel << "Project to coarse took "<< t/1000.0<< "ms" <<std::endl;
// Coarse correction
t=-usecond();
_CoarseSolve(Csrc,Csol);
t+=usecond();
GridLogLevel << "Coarse solve took "<< t/1000.0<< "ms" <<std::endl;
// Coarse to Fine
t=-usecond();
_Aggregates.PromoteFromSubspace(Csol,vec1);
add(out,out,vec1);
t+=usecond();
GridLogLevel << "Promote to this level took "<< t/1000.0<< "ms" <<std::endl;
// Residual
_FineOperator.Op(out,vec1); sub(vec1 ,in , vec1);
// Fine Smoother
t=-usecond();
_Smoother(vec1,vec2);
t+=usecond();
GridLogLevel << "Smoother took "<< t/1000.0<< "ms" <<std::endl;
add( out,out,vec2);
}
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
const int Ls=16;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
///////////////////////////////////////////////////
// Construct a coarsened grid; utility for this?
///////////////////////////////////////////////////
std::vector<int> block ({2,2,2,2});
const int nbasis= 8;
auto clatt = GridDefaultLatt();
for(int d=0;d<clatt.size();d++){
clatt[d] = clatt[d]/block[d];
}
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt, GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());;
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(Ls,Coarse4d);
std::vector<int> seeds({1,2,3,4});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds);
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(seeds);
LatticeGaugeField Umu(UGrid);
FieldMetaData header;
std::string file("./ckpoint_lat.4000");
NerscIO::readConfiguration(Umu,header,file);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Building g5R5 hermitian DWF operator" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
RealD mass=0.001;
RealD M5=1.8;
WilsonFermionR Dw(Umu,*UGrid,*UrbGrid,-M5);
DomainWallFermionR Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5);
DomainWallFermionR Dpv (Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,1.0,M5);
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
typedef CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> CoarseOperator;
typedef CoarseOperator::CoarseVector CoarseVector;
typedef CoarseOperator::siteVector siteVector;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Calling Aggregation class to build subspace" <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
MdagMLinearOperator<WilsonFermionR,LatticeFermion> SubspaceOp(Dw);
Subspace Aggregates4D(Coarse4d,UGrid,0);
Subspace Aggregates5D(Coarse5d,FGrid,0);
assert ( (nbasis & 0x1)==0);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << " 4D subspace build " <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
int nb=nbasis/2;
Gamma g5(Gamma::Algebra::Gamma5);
Aggregates4D.CreateSubspaceChebyshev(RNG4,SubspaceOp,nb,60.0,0.02,500,100,100,0.0);
for(int n=0;n<nb;n++){
Aggregates4D.subspace[n+nb]= Aggregates4D.subspace[n] - g5 * Aggregates4D.subspace[n];
Aggregates4D.subspace[n] = Aggregates4D.subspace[n] + g5 * Aggregates4D.subspace[n];
}
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << " Coarsen the operator " <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
typedef CoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> Level1Op4;
typedef CoarseCayleyFermion<vSpinColourVector,vTComplex,nbasis> Level1Op5;
Level1Op4 c_Dw (*Coarse4d,0);
Level1Op5 c_Dwf (*Coarse4d,*Coarse5d,c_Dw,M5, mass, Ls, 1.0,0.0);
std::cout<<GridLogMessage << " Coarsening Hw / Dw operator " <<std::endl;
NonHermitianLinearOperator<WilsonFermionR,LatticeFermion> LinOpDw(Dw);
c_Dw.CoarsenOperator(UGrid,LinOpDw,Aggregates4D);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << " Solve " <<std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
LatticeFermion src(FGrid); gaussian(RNG5,src);
LatticeFermion result(FGrid);
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
std::cout<<GridLogMessage << "Done "<< std::endl;
std::cout<<GridLogMessage << "**************************************************"<< std::endl;
Grid_finalize();
}