1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00
Grid/amd-omp-stack-err/WilsonFermionWorks1.cc
2023-08-27 00:50:58 -04:00

616 lines
19 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/action/fermion/WilsonFermion.cc
Copyright (C) 2022
Author: Peter Boyle <pabobyle@ph.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
Author: paboyle <paboyle@ph.ed.ac.uk>
Author: Fabian Joswig <fabian.joswig@ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/qcd/action/fermion/FermionCore.h>
#include <Grid/qcd/action/fermion/WilsonFermion.h>
NAMESPACE_BEGIN(Grid);
/////////////////////////////////
// Constructor and gauge import
/////////////////////////////////
//template <class Impl>
//WilsonFermion<Impl>::WilsonFermion(GaugeField &_Umu, GridCartesian &Fgrid,
// GridRedBlackCartesian &Hgrid, RealD _mass,
// const ImplParams &p,
// const WilsonAnisotropyCoefficients &anis)
// :
// Kernels(p),
// _grid(&Fgrid),
// _cbgrid(&Hgrid),
// Stencil(&Fgrid, npoint, Even, directions, displacements,p),
// StencilEven(&Hgrid, npoint, Even, directions,displacements,p), // source is Even
// StencilOdd(&Hgrid, npoint, Odd, directions,displacements,p), // source is Odd
// mass(_mass),
// Lebesgue(_grid),
// LebesgueEvenOdd(_cbgrid),
// Umu(&Fgrid),
// UmuEven(&Hgrid),
// UmuOdd(&Hgrid),
// _tmp(&Hgrid),
// anisotropyCoeff(anis)
//{
// Stencil.lo = &Lebesgue;
// StencilEven.lo = &LebesgueEvenOdd;
// StencilOdd.lo = &LebesgueEvenOdd;
// // Allocate the required comms buffer
// ImportGauge(_Umu);
// if (anisotropyCoeff.isAnisotropic){
// diag_mass = mass + 1.0 + (Nd-1)*(anisotropyCoeff.nu / anisotropyCoeff.xi_0);
// } else {
// diag_mass = 4.0 + mass;
// }
//
// int vol4;
// vol4=Fgrid.oSites();
// Stencil.BuildSurfaceList(1,vol4);
// vol4=Hgrid.oSites();
// StencilEven.BuildSurfaceList(1,vol4);
// StencilOdd.BuildSurfaceList(1,vol4);
//}
//
//template <class Impl>
//void WilsonFermion<Impl>::ImportGauge(const GaugeField &_Umu)
//{
// GaugeField HUmu(_Umu.Grid());
//
// //Here multiply the anisotropy coefficients
// if (anisotropyCoeff.isAnisotropic)
// {
//
// for (int mu = 0; mu < Nd; mu++)
// {
// GaugeLinkField U_dir = (-0.5)*PeekIndex<LorentzIndex>(_Umu, mu);
// if (mu != anisotropyCoeff.t_direction)
// U_dir *= (anisotropyCoeff.nu / anisotropyCoeff.xi_0);
//
// PokeIndex<LorentzIndex>(HUmu, U_dir, mu);
// }
// }
// else
// {
// HUmu = _Umu * (-0.5);
// }
// Impl::DoubleStore(GaugeGrid(), Umu, HUmu);
// pickCheckerboard(Even, UmuEven, Umu);
// pickCheckerboard(Odd, UmuOdd, Umu);
//}
//
///////////////////////////////
//// Implement the interface
///////////////////////////////
//
//template <class Impl>
//void WilsonFermion<Impl>::M(const FermionField &in, FermionField &out)
//{
// out.Checkerboard() = in.Checkerboard();
// Dhop(in, out, DaggerNo);
// axpy(out, diag_mass, in, out);
//}
//
//template <class Impl>
//void WilsonFermion<Impl>::Mdag(const FermionField &in, FermionField &out)
//{
// out.Checkerboard() = in.Checkerboard();
// Dhop(in, out, DaggerYes);
// axpy(out, diag_mass, in, out);
//}
//
//template <class Impl>
//void WilsonFermion<Impl>::Meooe(const FermionField &in, FermionField &out)
//{
// if (in.Checkerboard() == Odd) {
// DhopEO(in, out, DaggerNo);
// } else {
// DhopOE(in, out, DaggerNo);
// }
//}
//
//template <class Impl>
//void WilsonFermion<Impl>::MeooeDag(const FermionField &in, FermionField &out)
//{
// if (in.Checkerboard() == Odd) {
// DhopEO(in, out, DaggerYes);
// } else {
// DhopOE(in, out, DaggerYes);
// }
//}
//
//template <class Impl>
//void WilsonFermion<Impl>::Mooee(const FermionField &in, FermionField &out)
//{
// out.Checkerboard() = in.Checkerboard();
// typename FermionField::scalar_type scal(diag_mass);
// out = scal * in;
//}
//
//template <class Impl>
//void WilsonFermion<Impl>::MooeeDag(const FermionField &in, FermionField &out)
//{
// out.Checkerboard() = in.Checkerboard();
// Mooee(in, out);
//}
//
//template<class Impl>
//void WilsonFermion<Impl>::MooeeInv(const FermionField &in, FermionField &out)
//{
// out.Checkerboard() = in.Checkerboard();
// out = (1.0/(diag_mass))*in;
//}
//
//template<class Impl>
//void WilsonFermion<Impl>::MooeeInvDag(const FermionField &in, FermionField &out)
//{
// out.Checkerboard() = in.Checkerboard();
// MooeeInv(in,out);
//}
//template<class Impl>
//void WilsonFermion<Impl>::MomentumSpacePropagator(FermionField &out, const FermionField &in,RealD _m,std::vector<double> twist)
//{
// typedef typename FermionField::vector_type vector_type;
// typedef typename FermionField::scalar_type ScalComplex;
// typedef Lattice<iSinglet<vector_type> > LatComplex;
//
// // what type LatticeComplex
// conformable(_grid,out.Grid());
//
// Gamma::Algebra Gmu [] = {
// Gamma::Algebra::GammaX,
// Gamma::Algebra::GammaY,
// Gamma::Algebra::GammaZ,
// Gamma::Algebra::GammaT
// };
//
// Coordinate latt_size = _grid->_fdimensions;
//
// FermionField num (_grid); num = Zero();
// LatComplex wilson(_grid); wilson= Zero();
// LatComplex one (_grid); one = ScalComplex(1.0,0.0);
//
// LatComplex denom(_grid); denom= Zero();
// LatComplex kmu(_grid);
// ScalComplex ci(0.0,1.0);
// // momphase = n * 2pi / L
// for(int mu=0;mu<Nd;mu++) {
//
// LatticeCoordinate(kmu,mu);
//
// RealD TwoPiL = M_PI * 2.0/ latt_size[mu];
//
// kmu = TwoPiL * kmu;
// kmu = kmu + TwoPiL * one * twist[mu];//momentum for twisted boundary conditions
//
// wilson = wilson + 2.0*sin(kmu*0.5)*sin(kmu*0.5); // Wilson term
//
// num = num - sin(kmu)*ci*(Gamma(Gmu[mu])*in); // derivative term
//
// denom=denom + sin(kmu)*sin(kmu);
// }
//
// wilson = wilson + _m; // 2 sin^2 k/2 + m
//
// num = num + wilson*in; // -i gmu sin k + 2 sin^2 k/2 + m
//
// denom= denom+wilson*wilson; // sin^2 k + (2 sin^2 k/2 + m)^2
//
// denom= one/denom;
//
// out = num*denom; // [ -i gmu sin k + 2 sin^2 k/2 + m] / [ sin^2 k + (2 sin^2 k/2 + m)^2 ]
//
//}
//
//
/////////////////////////////////////
//// Internal
/////////////////////////////////////
//
//template <class Impl>
//void WilsonFermion<Impl>::DerivInternal(StencilImpl &st, DoubledGaugeField &U,
// GaugeField &mat, const FermionField &A,
// const FermionField &B, int dag) {
// assert((dag == DaggerNo) || (dag == DaggerYes));
//
// Compressor compressor(dag);
//
// FermionField Btilde(B.Grid());
// FermionField Atilde(B.Grid());
// Atilde = A;
//
// st.HaloExchange(B, compressor);
//
// for (int mu = 0; mu < Nd; mu++) {
// ////////////////////////////////////////////////////////////////////////
// // Flip gamma (1+g)<->(1-g) if dag
// ////////////////////////////////////////////////////////////////////////
// int gamma = mu;
// if (!dag) gamma += Nd;
//
// int Ls=1;
// Kernels::DhopDirKernel(st, U, st.CommBuf(), Ls, B.Grid()->oSites(), B, Btilde, mu, gamma);
//
// //////////////////////////////////////////////////
// // spin trace outer product
// //////////////////////////////////////////////////
// Impl::InsertForce4D(mat, Btilde, Atilde, mu);
// }
//}
//
//template <class Impl>
//void WilsonFermion<Impl>::DhopDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag)
//{
// conformable(U.Grid(), _grid);
// conformable(U.Grid(), V.Grid());
// conformable(U.Grid(), mat.Grid());
//
// mat.Checkerboard() = U.Checkerboard();
//
// DerivInternal(Stencil, Umu, mat, U, V, dag);
//}
//
//template <class Impl>
//void WilsonFermion<Impl>::DhopDerivOE(GaugeField &mat, const FermionField &U, const FermionField &V, int dag)
//{
// conformable(U.Grid(), _cbgrid);
// conformable(U.Grid(), V.Grid());
// //conformable(U.Grid(), mat.Grid()); not general, leaving as a comment (Guido)
// // Motivation: look at the SchurDiff operator
//
// assert(V.Checkerboard() == Even);
// assert(U.Checkerboard() == Odd);
// mat.Checkerboard() = Odd;
//
// DerivInternal(StencilEven, UmuOdd, mat, U, V, dag);
//}
//
//template <class Impl>
//void WilsonFermion<Impl>::DhopDerivEO(GaugeField &mat, const FermionField &U, const FermionField &V, int dag)
//{
// conformable(U.Grid(), _cbgrid);
// conformable(U.Grid(), V.Grid());
// //conformable(U.Grid(), mat.Grid());
//
// assert(V.Checkerboard() == Odd);
// assert(U.Checkerboard() == Even);
// mat.Checkerboard() = Even;
//
// DerivInternal(StencilOdd, UmuEven, mat, U, V, dag);
//}
//
//template <class Impl>
//void WilsonFermion<Impl>::Dhop(const FermionField &in, FermionField &out, int dag)
//{
// conformable(in.Grid(), _grid); // verifies full grid
// conformable(in.Grid(), out.Grid());
//
// out.Checkerboard() = in.Checkerboard();
//
// DhopInternal(Stencil, Lebesgue, Umu, in, out, dag);
//}
//
//template <class Impl>
//void WilsonFermion<Impl>::DhopOE(const FermionField &in, FermionField &out, int dag)
//{
// conformable(in.Grid(), _cbgrid); // verifies half grid
// conformable(in.Grid(), out.Grid()); // drops the cb check
//
// assert(in.Checkerboard() == Even);
// out.Checkerboard() = Odd;
//
// DhopInternal(StencilEven, LebesgueEvenOdd, UmuOdd, in, out, dag);
//}
//
//template <class Impl>
//void WilsonFermion<Impl>::DhopEO(const FermionField &in, FermionField &out,int dag)
//{
// conformable(in.Grid(), _cbgrid); // verifies half grid
// conformable(in.Grid(), out.Grid()); // drops the cb check
//
// assert(in.Checkerboard() == Odd);
// out.Checkerboard() = Even;
//
// DhopInternal(StencilOdd, LebesgueEvenOdd, UmuEven, in, out, dag);
//}
//
//template <class Impl>
//void WilsonFermion<Impl>::Mdir(const FermionField &in, FermionField &out, int dir, int disp)
//{
// DhopDir(in, out, dir, disp);
//}
//template <class Impl>
//void WilsonFermion<Impl>::MdirAll(const FermionField &in, std::vector<FermionField> &out)
//{
// DhopDirAll(in, out);
//}
////
//template <class Impl>
//void WilsonFermion<Impl>::DhopDir(const FermionField &in, FermionField &out, int dir, int disp)
//{
// Compressor compressor(DaggerNo);
// Stencil.HaloExchange(in, compressor);
//
// int skip = (disp == 1) ? 0 : 1;
// int dirdisp = dir + skip * 4;
// int gamma = dir + (1 - skip) * 4;
//
// DhopDirCalc(in, out, dirdisp, gamma, DaggerNo);
//};
//template <class Impl>
//void WilsonFermion<Impl>::DhopDirAll(const FermionField &in, std::vector<FermionField> &out)
//{
// Compressor compressor(DaggerNo);
// Stencil.HaloExchange(in, compressor);
//
// assert((out.size()==8)||(out.size()==9));
// for(int dir=0;dir<Nd;dir++){
// for(int disp=-1;disp<=1;disp+=2){
//
// int skip = (disp == 1) ? 0 : 1;
// int dirdisp = dir + skip * 4;
// int gamma = dir + (1 - skip) * 4;
//
// DhopDirCalc(in, out[dirdisp], dirdisp, gamma, DaggerNo);
// }
// }
//}
//template <class Impl>
//void WilsonFermion<Impl>::DhopDirCalc(const FermionField &in, FermionField &out,int dirdisp, int gamma, int dag)
//{
// int Ls=1;
// uint64_t Nsite=in.oSites();
// Kernels::DhopDirKernel(Stencil, Umu, Stencil.CommBuf(), Ls, Nsite, in, out, dirdisp, gamma);
//};
//
//template <class Impl>
//void WilsonFermion<Impl>::DhopInternal(StencilImpl &st, LebesgueOrder &lo,
// DoubledGaugeField &U,
// const FermionField &in,
// FermionField &out, int dag)
//{
//#ifdef GRID_OMP
// if ( WilsonKernelsStatic::Comms == WilsonKernelsStatic::CommsAndCompute )
// DhopInternalOverlappedComms(st,lo,U,in,out,dag);
// else
//#endif
// DhopInternalSerial(st,lo,U,in,out,dag);
//}
//
//template <class Impl>
//void WilsonFermion<Impl>::DhopInternalOverlappedComms(StencilImpl &st, LebesgueOrder &lo,
// DoubledGaugeField &U,
// const FermionField &in,
// FermionField &out, int dag)
//{
// GRID_TRACE("DhopOverlapped");
// assert((dag == DaggerNo) || (dag == DaggerYes));
//
// Compressor compressor(dag);
// int len = U.Grid()->oSites();
//
// /////////////////////////////
// // Start comms // Gather intranode and extra node differentiated??
// /////////////////////////////
// std::vector<std::vector<CommsRequest_t> > requests;
// st.Prepare();
// {
// GRID_TRACE("Gather");
// st.HaloGather(in,compressor);
// }
//
// tracePush("Communication");
// st.CommunicateBegin(requests);
//
// /////////////////////////////
// // Overlap with comms
// /////////////////////////////
// {
// GRID_TRACE("MergeSHM");
// st.CommsMergeSHM(compressor);
// }
//
// /////////////////////////////
// // do the compute interior
// /////////////////////////////
// int Opt = WilsonKernelsStatic::Opt;
// if (dag == DaggerYes) {
// GRID_TRACE("DhopDagInterior");
// Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,1,0);
// } else {
// GRID_TRACE("DhopInterior");
// Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,1,0);
// }
//
// /////////////////////////////
// // Complete comms
// /////////////////////////////
// st.CommunicateComplete(requests);
// tracePop("Communication");
//
// {
// GRID_TRACE("Merge");
// st.CommsMerge(compressor);
// }
// /////////////////////////////
// // do the compute exterior
// /////////////////////////////
//
// if (dag == DaggerYes) {
// GRID_TRACE("DhopDagExterior");
// Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,0,1);
// } else {
// GRID_TRACE("DhopExterior");
// Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out,0,1);
// }
//};
////
//template <class Impl>
//void WilsonFermion<Impl>::DhopInternalSerial(StencilImpl &st, LebesgueOrder &lo,
// DoubledGaugeField &U,
// const FermionField &in,
// FermionField &out, int dag)
//{
// GRID_TRACE("DhopSerial");
// assert((dag == DaggerNo) || (dag == DaggerYes));
// Compressor compressor(dag);
// {
// GRID_TRACE("HaloExchange");
// st.HaloExchange(in, compressor);
// }
//
// int Opt = WilsonKernelsStatic::Opt;
// if (dag == DaggerYes) {
// GRID_TRACE("DhopDag");
// Kernels::DhopDagKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out);
// } else {
// GRID_TRACE("Dhop");
// Kernels::DhopKernel(Opt,st,U,st.CommBuf(),1,U.oSites(),in,out);
// }
//};
///*Change ends */
//
///*******************************************************************************
// * Conserved current utilities for Wilson fermions, for contracting propagators
// * to make a conserved current sink or inserting the conserved current
// * sequentially.
// ******************************************************************************/
//template <class Impl>
//void WilsonFermion<Impl>::ContractConservedCurrent(PropagatorField &q_in_1,
// PropagatorField &q_in_2,
// PropagatorField &q_out,
// PropagatorField &src,
// Current curr_type,
// unsigned int mu)
//{
// if(curr_type != Current::Vector)
// {
// std::cout << GridLogError << "Only the conserved vector current is implemented so far." << std::endl;
// exit(1);
// }
//
// Gamma g5(Gamma::Algebra::Gamma5);
// conformable(_grid, q_in_1.Grid());
// conformable(_grid, q_in_2.Grid());
// conformable(_grid, q_out.Grid());
// auto UGrid= this->GaugeGrid();
//
// PropagatorField tmp_shifted(UGrid);
// PropagatorField g5Lg5(UGrid);
// PropagatorField R(UGrid);
// PropagatorField gmuR(UGrid);
//
// Gamma::Algebra Gmu [] = {
// Gamma::Algebra::GammaX,
// Gamma::Algebra::GammaY,
// Gamma::Algebra::GammaZ,
// Gamma::Algebra::GammaT,
// };
// Gamma gmu=Gamma(Gmu[mu]);
//
// g5Lg5=g5*q_in_1*g5;
// tmp_shifted=Cshift(q_in_2,mu,1);
// Impl::multLinkField(R,this->Umu,tmp_shifted,mu);
// gmuR=gmu*R;
//
// q_out=adj(g5Lg5)*R;
// q_out-=adj(g5Lg5)*gmuR;
//
// tmp_shifted=Cshift(q_in_1,mu,1);
// Impl::multLinkField(g5Lg5,this->Umu,tmp_shifted,mu);
// g5Lg5=g5*g5Lg5*g5;
// R=q_in_2;
// gmuR=gmu*R;
//
// q_out-=adj(g5Lg5)*R;
// q_out-=adj(g5Lg5)*gmuR;
//}
//
template <class Impl>
void WilsonFermion<Impl>::SeqConservedCurrent(PropagatorField &q_in,
PropagatorField &q_out,
PropagatorField &src,
Current curr_type,
unsigned int mu,
unsigned int tmin,
unsigned int tmax,
ComplexField &lattice_cmplx)
{
if(curr_type != Current::Vector)
{
std::cout << GridLogError << "Only the conserved vector current is implemented so far." << std::endl;
exit(1);
}
int tshift = (mu == Nd-1) ? 1 : 0;
unsigned int LLt = GridDefaultLatt()[Tp];
conformable(_grid, q_in.Grid());
conformable(_grid, q_out.Grid());
auto UGrid= this->GaugeGrid();
PropagatorField tmp(UGrid);
PropagatorField Utmp(UGrid);
PropagatorField L(UGrid);
PropagatorField zz (UGrid);
zz=Zero();
LatticeInteger lcoor(UGrid); LatticeCoordinate(lcoor,Nd-1);
Gamma::Algebra Gmu [] = {
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT,
};
Gamma gmu=Gamma(Gmu[mu]);
tmp = Cshift(q_in,mu,1);
Impl::multLinkField(Utmp,this->Umu,tmp,mu);
tmp = ( Utmp*lattice_cmplx - gmu*Utmp*lattice_cmplx ); // Forward hop
tmp = where((lcoor>=tmin),tmp,zz); // Mask the time
// q_out = where((lcoor<=tmax),tmp,zz); // Position of current complicated
//
// tmp = q_in *lattice_cmplx;
// tmp = Cshift(tmp,mu,-1);
// Impl::multLinkField(Utmp,this->Umu,tmp,mu+Nd); // Adjoint link
// tmp = -( Utmp + gmu*Utmp );
// // Mask the time
// if (tmax == LLt - 1 && tshift == 1){ // quick fix to include timeslice 0 if tmax + tshift is over the last timeslice
// unsigned int t0 = 0;
// tmp = where(((lcoor==t0) || (lcoor>=tmin+tshift)),tmp,zz);
// } else {
// tmp = where((lcoor>=tmin+tshift),tmp,zz);
// }
// q_out+= where((lcoor<=tmax+tshift),tmp,zz); // Position of current complicated
}
//template class WilsonFermion<WilsonImplD>;
NAMESPACE_END(Grid);