1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 15:55:37 +00:00
Grid/lib/communicator/Communicator_none.cc
Peter Boyle dc814f30da Binary IO file for generic Grid array parallel I/O.
Number of IO MPI tasks can be varied by selecting which
dimensions use parallel IO and which dimensions use Serial send to boss
I/O.

Thus can neck down from, say 1024 nodes = 4x4x8x8 to {1,8,32,64,128,256,1024} nodes
doing the I/O.

Interpolates nicely between ALL nodes write their data, a single boss per time-plane
in processor space [old UKQCD fortran code did this], and a single node doing all I/O.

Not sure I have the transfer sizes big enough and am not overly convinced fstream
is guaranteed to not give buffer inconsistencies unless I set streambuf size to zero.

Practically it has worked on 8 tasks, 2x1x2x2 writing /cloning NERSC configurations
on my MacOS + OpenMPI and Clang environment.

It is VERY easy to switch to pwrite at a later date, and also easy to send x-strips around from
each node in order to gather bigger chunks at the syscall level.

That would push us up to the circa 8x 18*4*8 == 4KB size write chunk, and by taking, say, x/y non
parallel we get to 16MB contiguous chunks written in multi 4KB transactions
per IOnode in 64^3 lattices for configuration I/O.

I suspect this is fine for system performance.
2015-08-26 13:40:29 +01:00

90 lines
1.9 KiB
C++

#include "Grid.h"
namespace Grid {
CartesianCommunicator::CartesianCommunicator(const std::vector<int> &processors)
{
_processors = processors;
_ndimension = processors.size();
_processor_coor.resize(_ndimension);
// Require 1^N processor grid for fake
_Nprocessors=1;
_processor = 0;
for(int d=0;d<_ndimension;d++) {
assert(_processors[d]==1);
_processor_coor[d] = 0;
}
}
void CartesianCommunicator::GlobalSum(float &){}
void CartesianCommunicator::GlobalSumVector(float *,int N){}
void CartesianCommunicator::GlobalSum(double &){}
void CartesianCommunicator::GlobalSum(uint32_t &){}
void CartesianCommunicator::GlobalSumVector(double *,int N){}
void CartesianCommunicator::RecvFrom(void *recv,
int recv_from_rank,
int bytes)
{
assert(0);
}
void CartesianCommunicator::SendTo(void *xmit,
int xmit_to_rank,
int bytes)
{
assert(0);
}
// Basic Halo comms primitive -- should never call in single node
void CartesianCommunicator::SendToRecvFrom(void *xmit,
int dest,
void *recv,
int from,
int bytes)
{
assert(0);
}
void CartesianCommunicator::SendToRecvFromBegin(std::vector<CommsRequest_t> &list,
void *xmit,
int dest,
void *recv,
int from,
int bytes)
{
assert(0);
}
void CartesianCommunicator::SendToRecvFromComplete(std::vector<CommsRequest_t> &list)
{
assert(0);
}
void CartesianCommunicator::Barrier(void)
{
}
void CartesianCommunicator::Broadcast(int root,void* data, int bytes)
{
}
void CartesianCommunicator::BroadcastWorld(int root,void* data, int bytes)
{
}
void CartesianCommunicator::ShiftedRanks(int dim,int shift,int &source,int &dest)
{
source =0;
dest=0;
}
int CartesianCommunicator::RankFromProcessorCoor(std::vector<int> &coor)
{
return 0;
}
void CartesianCommunicator::ProcessorCoorFromRank(int rank, std::vector<int> &coor)
{
}
}