mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-16 02:35:36 +00:00
264 lines
7.3 KiB
C++
264 lines
7.3 KiB
C++
#ifndef SCALAR_IMPL
|
|
#define SCALAR_IMPL
|
|
|
|
|
|
namespace Grid {
|
|
//namespace QCD {
|
|
|
|
template <class S>
|
|
class ScalarImplTypes {
|
|
public:
|
|
typedef S Simd;
|
|
|
|
template <typename vtype>
|
|
using iImplField = iScalar<iScalar<iScalar<vtype> > >;
|
|
|
|
typedef iImplField<Simd> SiteField;
|
|
typedef SiteField SitePropagator;
|
|
typedef SiteField SiteComplex;
|
|
|
|
typedef Lattice<SiteField> Field;
|
|
typedef Field ComplexField;
|
|
typedef Field FermionField;
|
|
typedef Field PropagatorField;
|
|
|
|
static inline void generate_momenta(Field& P, GridParallelRNG& pRNG){
|
|
gaussian(pRNG, P);
|
|
}
|
|
|
|
static inline Field projectForce(Field& P){return P;}
|
|
|
|
static inline void update_field(Field& P, Field& U, double ep) {
|
|
U += P*ep;
|
|
}
|
|
|
|
static inline RealD FieldSquareNorm(Field& U) {
|
|
return (- sum(trace(U*U))/2.0);
|
|
}
|
|
|
|
static inline void HotConfiguration(GridParallelRNG &pRNG, Field &U) {
|
|
gaussian(pRNG, U);
|
|
}
|
|
|
|
static inline void TepidConfiguration(GridParallelRNG &pRNG, Field &U) {
|
|
gaussian(pRNG, U);
|
|
}
|
|
|
|
static inline void ColdConfiguration(GridParallelRNG &pRNG, Field &U) {
|
|
U = 1.0;
|
|
}
|
|
|
|
static void MomentumSpacePropagator(Field &out, RealD m)
|
|
{
|
|
GridBase *grid = out._grid;
|
|
Field kmu(grid), one(grid);
|
|
const unsigned int nd = grid->_ndimension;
|
|
std::vector<int> &l = grid->_fdimensions;
|
|
|
|
one = Complex(1.0,0.0);
|
|
out = m*m;
|
|
for(int mu = 0; mu < nd; mu++)
|
|
{
|
|
Real twoPiL = M_PI*2./l[mu];
|
|
|
|
LatticeCoordinate(kmu,mu);
|
|
kmu = 2.*sin(.5*twoPiL*kmu);
|
|
out = out + kmu*kmu;
|
|
}
|
|
out = one/out;
|
|
}
|
|
|
|
static void FreePropagator(const Field &in, Field &out,
|
|
const Field &momKernel)
|
|
{
|
|
FFT fft((GridCartesian *)in._grid);
|
|
Field inFT(in._grid);
|
|
|
|
fft.FFT_all_dim(inFT, in, FFT::forward);
|
|
inFT = inFT*momKernel;
|
|
fft.FFT_all_dim(out, inFT, FFT::backward);
|
|
}
|
|
|
|
static void FreePropagator(const Field &in, Field &out, RealD m)
|
|
{
|
|
Field momKernel(in._grid);
|
|
|
|
MomentumSpacePropagator(momKernel, m);
|
|
FreePropagator(in, out, momKernel);
|
|
}
|
|
|
|
};
|
|
|
|
#ifdef USE_FFT_ACCELERATION
|
|
#ifndef FFT_MASS
|
|
#error "USE_FFT_ACCELERATION is defined but not FFT_MASS"
|
|
#endif
|
|
#endif
|
|
|
|
template <class S, unsigned int N>
|
|
class ScalarAdjMatrixImplTypes {
|
|
public:
|
|
typedef S Simd;
|
|
typedef QCD::SU<N> Group;
|
|
|
|
template <typename vtype>
|
|
using iImplField = iScalar<iScalar<iMatrix<vtype, N>>>;
|
|
template <typename vtype>
|
|
using iImplComplex = iScalar<iScalar<iScalar<vtype>>>;
|
|
|
|
typedef iImplField<Simd> SiteField;
|
|
typedef SiteField SitePropagator;
|
|
typedef iImplComplex<Simd> SiteComplex;
|
|
|
|
typedef Lattice<SiteField> Field;
|
|
typedef Lattice<SiteComplex> ComplexField;
|
|
typedef Field FermionField;
|
|
typedef Field PropagatorField;
|
|
|
|
static void MomentaSquare(ComplexField &out)
|
|
{
|
|
GridBase *grid = out._grid;
|
|
const std::vector<int> &l = grid->FullDimensions();
|
|
ComplexField kmu(grid);
|
|
|
|
for (int mu = 0; mu < grid->Nd(); mu++)
|
|
{
|
|
Real twoPiL = M_PI * 2.0 / l[mu];
|
|
LatticeCoordinate(kmu, mu);
|
|
kmu = 2.0 * sin(0.5 * twoPiL * kmu);
|
|
out += kmu * kmu;
|
|
}
|
|
}
|
|
|
|
static void MomentumSpacePropagator(ComplexField &out, RealD m)
|
|
{
|
|
GridBase *grid = out._grid;
|
|
ComplexField one(grid);
|
|
one = Complex(1.0, 0.0);
|
|
out = m * m;
|
|
MomentaSquare(out);
|
|
out = one / out;
|
|
}
|
|
|
|
static inline void generate_momenta(Field &P, GridParallelRNG &pRNG)
|
|
{
|
|
#ifndef USE_FFT_ACCELERATION
|
|
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, P);
|
|
#else
|
|
|
|
Field Pgaussian(P._grid), Pp(P._grid);
|
|
ComplexField p2(P._grid); p2 = zero;
|
|
RealD M = FFT_MASS;
|
|
|
|
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, Pgaussian);
|
|
|
|
FFT theFFT((GridCartesian*)P._grid);
|
|
theFFT.FFT_all_dim(Pp, Pgaussian, FFT::forward);
|
|
MomentaSquare(p2);
|
|
p2 += M * M;
|
|
p2 = sqrt(p2);
|
|
Pp *= p2;
|
|
theFFT.FFT_all_dim(P, Pp, FFT::backward);
|
|
|
|
#endif //USE_FFT_ACCELERATION
|
|
}
|
|
|
|
static inline Field projectForce(Field& P) {return P;}
|
|
|
|
static inline void update_field(Field &P, Field &U, double ep)
|
|
{
|
|
#ifndef USE_FFT_ACCELERATION
|
|
double t0=usecond();
|
|
U += P * ep;
|
|
double t1=usecond();
|
|
double total_time = (t1-t0)/1e6;
|
|
std::cout << GridLogIntegrator << "Total time for updating field (s) : " << total_time << std::endl;
|
|
#else
|
|
// FFT transform P(x) -> P(p)
|
|
// divide by (M^2+p^2) M external parameter (how to pass?)
|
|
// P'(p) = P(p)/(M^2+p^2)
|
|
// Transform back -> P'(x)
|
|
// U += P'(x)*ep
|
|
|
|
Field Pp(U._grid), P_FFT(U._grid);
|
|
static ComplexField p2(U._grid);
|
|
RealD M = FFT_MASS;
|
|
|
|
FFT theFFT((GridCartesian*)U._grid);
|
|
theFFT.FFT_all_dim(Pp, P, FFT::forward);
|
|
|
|
static bool first_call = true;
|
|
if (first_call)
|
|
{
|
|
// avoid recomputing
|
|
MomentumSpacePropagator(p2, M);
|
|
first_call = false;
|
|
}
|
|
Pp *= p2;
|
|
theFFT.FFT_all_dim(P_FFT, Pp, FFT::backward);
|
|
U += P_FFT * ep;
|
|
|
|
#endif //USE_FFT_ACCELERATION
|
|
}
|
|
|
|
static inline RealD FieldSquareNorm(Field &U)
|
|
{
|
|
#ifndef USE_FFT_ACCELERATION
|
|
return (TensorRemove(sum(trace(U * U))).real());
|
|
#else
|
|
// In case of Fourier acceleration we have to:
|
|
// compute U(p)*U(p)/(M^2+p^2)) Parseval theorem
|
|
// 1 FFT needed U(x) -> U(p)
|
|
// M to be passed
|
|
|
|
FFT theFFT((GridCartesian*)U._grid);
|
|
Field Up(U._grid);
|
|
|
|
theFFT.FFT_all_dim(Up, U, FFT::forward);
|
|
RealD M = FFT_MASS;
|
|
ComplexField p2(U._grid);
|
|
MomentumSpacePropagator(p2, M);
|
|
Field Up2 = Up * p2;
|
|
// from the definition of the DFT we need to divide by the volume
|
|
return (-TensorRemove(sum(trace(adj(Up) * Up2))).real() / U._grid->gSites());
|
|
#endif //USE_FFT_ACCELERATION
|
|
}
|
|
|
|
static inline void HotConfiguration(GridParallelRNG &pRNG, Field &U) {
|
|
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, U);
|
|
}
|
|
|
|
static inline void TepidConfiguration(GridParallelRNG &pRNG, Field &U) {
|
|
Group::GaussianFundamentalLieAlgebraMatrix(pRNG, U, 0.01);
|
|
}
|
|
|
|
static inline void ColdConfiguration(GridParallelRNG &pRNG, Field &U) {
|
|
U = zero;
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
typedef ScalarImplTypes<vReal> ScalarImplR;
|
|
typedef ScalarImplTypes<vRealF> ScalarImplF;
|
|
typedef ScalarImplTypes<vRealD> ScalarImplD;
|
|
typedef ScalarImplTypes<vComplex> ScalarImplCR;
|
|
typedef ScalarImplTypes<vComplexF> ScalarImplCF;
|
|
typedef ScalarImplTypes<vComplexD> ScalarImplCD;
|
|
|
|
// Hardcoding here the size of the matrices
|
|
typedef ScalarAdjMatrixImplTypes<vComplex, QCD::Nc> ScalarAdjImplR;
|
|
typedef ScalarAdjMatrixImplTypes<vComplexF, QCD::Nc> ScalarAdjImplF;
|
|
typedef ScalarAdjMatrixImplTypes<vComplexD, QCD::Nc> ScalarAdjImplD;
|
|
|
|
template <int Colours > using ScalarNxNAdjImplR = ScalarAdjMatrixImplTypes<vComplex, Colours >;
|
|
template <int Colours > using ScalarNxNAdjImplF = ScalarAdjMatrixImplTypes<vComplexF, Colours >;
|
|
template <int Colours > using ScalarNxNAdjImplD = ScalarAdjMatrixImplTypes<vComplexD, Colours >;
|
|
|
|
//}
|
|
}
|
|
|
|
#endif
|