1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-16 02:35:36 +00:00
Grid/lib/simd/BGQQPX.h
2016-12-20 10:21:26 +00:00

797 lines
24 KiB
C

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/simd/BGQQPX.h
Copyright (C) 2015
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_ASM_BGQ_QPX_H
#define GRID_ASM_BGQ_QPX_H
#include <stddint.h>
/*********************************************************
* Architectural macros
*********************************************************/
#define VLOADf(OFF,PTR,DEST) "qvlfsux " #DEST "," #OFF "," #PTR ") ;\n"
#define VLOADd(OFF,PTR,DEST) "qvlfdux " #DEST "," #OFF "," #PTR ") ;\n"
#define VSTOREf(OFF,PTR,SRC) "qvstfsux " #SRC "," #OFF "," #PTR ") ;\n"
#define VSTOREd(OFF,PTR,SRC) "qvstfdux " #SRC "," #OFF "," #PTR ") ;\n"
#define VSPLATf(A,B,DEST) "qvlfcdxa " #A "," #B "," #DEST ";\n"
#define VSPLATd(A,B,DEST) "qvlfcsxa " #A "," #B "," #DEST ";\n"
#define LOAD64(A,ptr)
#define VZERO(DEST) "qvfclr " #DEST "; \n"
#define VONE (DEST) "qvfset " #DEST "; \n"
#define VNEG (SRC,DEST) "qvfneg " #DEST "," #SRC "; \n"
#define VMOV(A,DEST) "qvfmr " #DEST, "," #A ";\n"
#define VADD(A,B,DEST) "qvfadd " #DEST "," #A "," #B ";\n"
#define VSUB(A,B,DEST) "qvfsub " #DEST "," #A "," #B ";\n"
#define VMUL(A,B,DEST) "qvfmul " #DEST "," #A "," #B ";\n"
#define VMUL_RR_RI(A,B,DEST) "qvfxmul " #DEST "," #A "," #B ";\n"
#define VMADD(A,B,C,DEST) "qvfmadd " #DEST "," #A "," #B ","#C ";\n"
#define VMADD_RR_RI(A,B,C,DEST) "qvfxmadd " #DEST "," #A "," #B ","#C ";\n"
#define VMADD_MII_IR(A,B,C,DEST) "qvfxxnpmadd " #DEST "," #A "," #B ","#C ";\n"
#define VMADD_II_MIR(A,B,C,DEST) "qvfmadd " #DEST "," #A "," #B ","#C ";\n"
#define CACHE_LOCK (PTR) asm (" dcbtls %%r0, %0 \n" : : "r" (PTR) );
#define CACHE_UNLOCK(PTR) asm (" dcblc %%r0, %0 \n" : : "r" (PTR) );
#define CACHE_FLUSH (PTR) asm (" dcbf %%r0, %0 \n" : : "r" (PTR) );
#define CACHE_TOUCH (PTR) asm (" dcbt %%r0, %0 \n" : : "r" (PTR) );
// Gauge field locking 2 x 9 complex == 18*8 / 16 bytes per link
// This is 144/288 bytes == 4.5; 9 lines
#define MASK_REGS /*NOOP ON BGQ*/
#define PF_GAUGE(A) /*NOOP ON BGQ*/
#define PREFETCH1_CHIMU(base) /*NOOP ON BGQ*/
#define PREFETCH_CHIMU(base) /*NOOP ON BGQ*/
/*********************************************************
* Register definitions
*********************************************************/
#define psi_00 0
#define psi_01 1
#define psi_02 2
#define psi_10 3
#define psi_11 4
#define psi_12 5
#define psi_20 6
#define psi_21 7
#define psi_22 8
#define psi_30 9
#define psi_31 10
#define psi_32 11
#define Chi_00 12
#define Chi_01 13
#define Chi_02 14
#define Chi_10 15
#define Chi_11 16
#define Chi_12 17
#define UChi_00 18
#define UChi_01 19
#define UChi_02 20
#define UChi_10 21
#define UChi_11 22
#define UChi_12 23
#define U0 24
#define U1 25
#define U2 26
#define one 27
#define REP %%r16
#define IMM %%r17
/*Alias regs*/
#define Chimu_00 Chi_00
#define Chimu_01 Chi_01
#define Chimu_02 Chi_02
#define Chimu_10 Chi_10
#define Chimu_11 Chi_11
#define Chimu_12 Chi_02
#define Chimu_20 UChi_00
#define Chimu_21 UChi_01
#define Chimu_22 UChi_02
#define Chimu_30 UChi_10
#define Chimu_31 UChi_11
#define Chimu_32 UChi_02
/*********************************************************
* Macro sequences encoding QCD
*********************************************************/
#define LOCK_GAUGE(dir) \
{ \
uint8_t *byte_addr = (uint8_t *)&U._odata[sU](dir); \
for(int i=0;i< 18*2*BYTES_PER_WORD*8;i+=32){ \
CACHE_LOCK(&byte_addr[i]); \
} \
}
#define UNLOCK_GAUGE(dir) \
{ \
uint8_t *byte_addr = (uint8_t *)&U._odata[sU](dir); \
for(int i=0;i< 18*2*BYTES_PER_WORD*8;i+=32){ \
CACHE_UNLOCK(&byte_addr[i]); \
} \
}
#define MAYBEPERM(A,B)
#define PERMUTE_DIR3
#define PERMUTE_DIR2
#define PERMUTE_DIR1
#define PERMUTE_DIR0
#define MULT_2SPIN_DIR_PFXP(A,p) MULT_2SPIN(&U._odata[sU](A),p)
#define MULT_2SPIN_DIR_PFYP(A,p) MULT_2SPIN(&U._odata[sU](A),p)
#define MULT_2SPIN_DIR_PFZP(A,p) MULT_2SPIN(&U._odata[sU](A),p)
#define MULT_2SPIN_DIR_PFTP(A,p) MULT_2SPIN(&U._odata[sU](A),p)
#define MULT_2SPIN_DIR_PFXM(A,p) MULT_2SPIN(&U._odata[sU](A),p)
#define MULT_2SPIN_DIR_PFYM(A,p) MULT_2SPIN(&U._odata[sU](A),p)
#define MULT_2SPIN_DIR_PFZM(A,p) MULT_2SPIN(&U._odata[sU](A),p)
#define MULT_2SPIN_DIR_PFTM(A,p) MULT_2SPIN(&U._odata[sU](A),p)
#define MULT_SPIN(ptr,p) { \
uint64_t ub = ((uint64_t)base); \
asm ( \
VLOAD(%0,%3,U0) \
VLOAD(%1,%3,U1) \
VLOAD(%2,%3,U2) \
VMUL_RR_RI(U0,Chi_00,UChi_00) \
VMUL_RR_RI(U1,Chi_00,UChi_01) \
VMUL_RR_RI(U2,Chi_00,UChi_02) \
VMUL_RR_RI(U0,Chi_10,UChi_10) \
VMUL_RR_RI(U1,Chi_10,UChi_11) \
VMUL_RR_RI(U2,Chi_10,UChi_12) \
VMADD_MII_IR(U0,Chi_00,UChi_00,UChi_00) \
VMADD_MII_IR(U1,Chi_00,UChi_01,UChi_01) \
VMADD_MII_IR(U2,Chi_00,UChi_02,UChi_02) \
VMADD_MII_IR(U0,Chi_10,UChi_10,UChi_10) \
VMADD_MII_IR(U1,Chi_10,UChi_11,UChi_11) \
VMADD_MII_IR(U2,Chi_10,UChi_12,UChi_12) \
: : "r" (0), "r" (32*3), "r" (32*6), "r" (ub )); \
asm ( \
VLOAD(%0,%3,U0) \
VLOAD(%1,%3,U1) \
VLOAD(%2,%3,U2) \
VMADD_RR_RI(U0,Chi_01,UChi_00,UChi_00) \
VMADD_RR_RI(U1,Chi_01,UChi_01,UChi_01) \
VMADD_RR_RI(U2,Chi_01,UChi_02,UChi_02) \
VMADD_RR_RI(U0,Chi_11,UChi_10,UChi_10) \
VMADD_RR_RI(U1,Chi_11,UChi_11,UChi_11) \
VMADD_RR_RI(U2,Chi_11,UChi_12,UChi_12) \
VMADD_MII_IR(U0,Chi_01,UChi_00,UChi_00) \
VMADD_MII_IR(U1,Chi_01,UChi_01,UChi_01) \
VMADD_MII_IR(U2,Chi_01,UChi_02,UChi_02) \
VMADD_MII_IR(U0,Chi_11,UChi_10,UChi_10) \
VMADD_MII_IR(U1,Chi_11,UChi_11,UChi_11) \
VMADD_MII_IR(U2,Chi_11,UChi_12,UChi_12) \
: : "r" (32), "r" (32*4), "r" (32*7), "r" (ub )); \
asm ( \
VLOAD(%0,%3,U0) \
VLOAD(%1,%3,U1) \
VLOAD(%2,%3,U2) \
VMADD_RR_RI(U0,Chi_02,UChi_00,UChi_00) \
VMADD_RR_RI(U1,Chi_02,UChi_01,UChi_01) \
VMADD_RR_RI(U2,Chi_02,UChi_02,UChi_02) \
VMADD_RR_RI(U0,Chi_12,UChi_10,UChi_10) \
VMADD_RR_RI(U1,Chi_12,UChi_11,UChi_11) \
VMADD_RR_RI(U2,Chi_12,UChi_12,UChi_12) \
VMADD_MII_IR(U0,Chi_02,UChi_00,UChi_00) \
VMADD_MII_IR(U1,Chi_02,UChi_01,UChi_01) \
VMADD_MII_IR(U2,Chi_02,UChi_02,UChi_02) \
VMADD_MII_IR(U0,Chi_12,UChi_10,UChi_10) \
VMADD_MII_IR(U1,Chi_12,UChi_11,UChi_11) \
VMADD_MII_IR(U2,Chi_12,UChi_12,UChi_12) \
: : "r" (32*2), "r" (32*5), "r" (32*8), "r" (ub )); \
}
#define SAVE_RESULT(base,basep) {\
uint64_t ub = ((uint64_t)base) - 32; \
asm("mr %0,"REP";\n\t" \
"li " IMM ",32;\n\t" \
VSTORE(IMM,REP,psi_00) \
VSTORE(IMM,REP,psi_01) \
VSTORE(IMM,REP,psi_02) \
VSTORE(IMM,REP,psi_10) \
VSTORE(IMM,REP,psi_11) \
VSTORE(IMM,REP,psi_12) \
VSTORE(IMM,REP,psi_20) \
VSTORE(IMM,REP,psi_21) \
VSTORE(IMM,REP,psi_22) \
VSTORE(IMM,REP,psi_30) \
VSTORE(IMM,REP,psi_31) \
VSTORE(IMM,REP,psi_32) \
); \
}
/*
*Annoying BG/Q loads with no immediat indexing and big performance hit
*when second miss to a L1 line occurs
*/
#define LOAD_CHI(base) { \
uint64_t ub = ((uint64_t)base) - 64; \
asm("mr %0,"REP";\n\t" \
"li " IMM ",64;\n\t" \
VLOAD(IMM,REP,Chi_00) \
VLOAD(IMM,REP,Chi_02) \
VLOAD(IMM,REP,Chi_11) : : "r" (ub) ); \
ub = ((uint64_t)base) - 32; \
asm("mr %0,"REP";\n\t" \
"li IMM,64;\n\t" \
VLOAD(IMM,REP,Chimu_01) \
VLOAD(IMM,REP,Chimu_10) \
VLOAD(IMM,REP,Chimu_12) : : "r" (ub) ); \
}
#define LOAD_CHIMU(base) { \
uint64_t ub = ((uint64_t)base) - 64; \
asm("mr %0,"REP";\n\t" \
"li IMM,64;\n\t" \
VLOAD(IMM,REP,Chimu_00) \
VLOAD(IMM,REP,Chimu_02) \
VLOAD(IMM,REP,Chimu_11) \
VLOAD(IMM,REP,Chimu_20) \
VLOAD(IMM,REP,Chimu_22) \
VLOAD(IMM,REP,Chimu_31) : : "r" (ub) ); \
ub = ((uint64_t)base) - 32; \
asm("mr %0,"REP";\n\t" \
"li IMM,64;\n\t" \
VLOAD(IMM,REP,Chimu_01) \
VLOAD(IMM,REP,Chimu_10) \
VLOAD(IMM,REP,Chimu_12) \
VLOAD(IMM,REP,Chimu_21) \
VLOAD(IMM,REP,Chimu_30) \
VLOAD(IMM,REP,Chimu_32) : : "r" (ub) ); \
}
// hspin(0)=fspin(0)+timesI(fspin(3));
// hspin(1)=fspin(1)+timesI(fspin(2));
#define XP_PROJMEM(base) { \
LOAD_CHIMU(base); \
asm ( \
VONE(one) \
VMADD_MII_IR(one,Chimu_30,Chimu_00,Chi_00) \
VMADD_MII_IR(one,Chimu_31,Chimu_01,Chi_01) \
VMADD_MII_IR(one,Chimu_32,Chimu_02,Chi_02) \
VMADD_MII_IR(one,Chimu_20,Chimu_10,Chi_10) \
VMADD_MII_IR(one,Chimu_21,Chimu_11,Chi_11) \
VMADD_MII_IR(one,Chimu_22,Chimu_12,Chi_12) \
); \
}
#define XM_PROJMEM(base) { \
LOAD_CHIMU(base); \
asm ( \
VONE(one) \
VMADD_II_MIR(one,Chimu_30,Chimu_00,Chi_00) \
VMADD_II_MIR(one,Chimu_31,Chimu_01,Chi_01) \
VMADD_II_MIR(one,Chimu_32,Chimu_02,Chi_02) \
VMADD_II_MIR(one,Chimu_20,Chimu_10,Chi_10) \
VMADD_II_MIR(one,Chimu_21,Chimu_11,Chi_11) \
VMADD_II_MIR(one,Chimu_22,Chimu_12,Chi_12) \
); \
}
// hspin(0)=fspin(0)-fspin(3);
// hspin(1)=fspin(1)+fspin(2);
#define YP_PROJMEM(base) { \
LOAD_CHIMU(base); \
asm ( \
VSUB(Chimu_00,Chimu_00,Chi_30) \
VSUB(Chimu_01,Chimu_01,Chi_31) \
VSUB(Chimu_02,Chimu_02,Chi_32) \
VADD(Chimu_10,Chimu_10,Chi_20) \
VADD(Chimu_11,Chimu_11,Chi_21) \
VADD(Chimu_12,Chimu_12,Chi_22) \
); \
}
#define YM_PROJMEM(base) { \
LOAD_CHIMU(base); \
asm ( \
VADD(Chimu_00,Chimu_00,Chi_30) \
VADD(Chimu_01,Chimu_01,Chi_31) \
VADD(Chimu_02,Chimu_02,Chi_32) \
VSUB(Chimu_10,Chimu_10,Chi_20) \
VSUB(Chimu_11,Chimu_11,Chi_21) \
VSUB(Chimu_12,Chimu_12,Chi_22) \
); \
}
/*Gz
* 0 0 i 0 [0]+-i[2]
* 0 0 0 -i [1]-+i[3]
* -i 0 0 0
* 0 i 0 0
*/
#define ZP_PROJMEM(base) { \
LOAD_CHIMU(base); \
asm ( \
VONE(one) \
VMADD_MII_IR(one,Chimu_20,Chimu_00,Chi_00) \
VMADD_MII_IR(one,Chimu_21,Chimu_01,Chi_01) \
VMADD_MII_IR(one,Chimu_22,Chimu_02,Chi_02) \
VMADD_II_MIR(one,Chimu_30,Chimu_10,Chi_10) \
VMADD_II_MIR(one,Chimu_31,Chimu_11,Chi_11) \
VMADD_II_MIR(one,Chimu_32,Chimu_12,Chi_12) \
); \
}
#define ZM_PROJMEM(base) { \
LOAD_CHIMU(base); \
asm ( \
VONE(one) \
VMADD_II_MIR(one,Chimu_20,Chimu_00,Chi_00) \
VMADD_II_MIR(one,Chimu_21,Chimu_01,Chi_01) \
VMADD_II_MIR(one,Chimu_22,Chimu_02,Chi_02) \
VMADD_MII_IR(one,Chimu_30,Chimu_10,Chi_10) \
VMADD_MII_IR(one,Chimu_31,Chimu_11,Chi_11) \
VMADD_MII_IR(one,Chimu_32,Chimu_12,Chi_12) \
); \
}
/*Gt
* 0 0 1 0 [0]+-[2]
* 0 0 0 1 [1]+-[3]
* 1 0 0 0
* 0 1 0 0
*/
#define TP_PROJMEM(base) { \
LOAD_CHIMU(base); \
asm ( \
VADD(Chimu_00,Chimu_00,Chi_20) \
VADD(Chimu_01,Chimu_01,Chi_21) \
VADD(Chimu_02,Chimu_02,Chi_22) \
VADD(Chimu_10,Chimu_10,Chi_30) \
VADD(Chimu_11,Chimu_11,Chi_31) \
VADD(Chimu_12,Chimu_12,Chi_32) \
); \
}
#define TM_PROJMEM(base) { \
LOAD_CHIMU(base); \
asm ( \
VSUB(Chimu_00,Chimu_00,Chi_20) \
VSUB(Chimu_01,Chimu_01,Chi_21) \
VSUB(Chimu_02,Chimu_02,Chi_22) \
VSUB(Chimu_10,Chimu_10,Chi_30) \
VSUB(Chimu_11,Chimu_11,Chi_31) \
VSUB(Chimu_12,Chimu_12,Chi_32) \
); \
}
/*
fspin(0)=hspin(0);
fspin(1)=hspin(1);
fspin(2)=timesMinusI(hspin(1));
fspin(3)=timesMinusI(hspin(0));
fspin(0)+=hspin(0);
fspin(1)+=hspin(1);
fspin(2)-=timesI(hspin(1));
fspin(3)-=timesI(hspin(0));
*/
#define XP_RECON { \
asm(\
VONE(one)\
VMOV(psi_00,UChi_00) VMOV(psi_01,UChi_01) VMOV(psi_02,UChi_02)\
VMOV(psi_10,UChi_10) VMOV(psi_11,UChi_11) VMOV(psi_12,UChi_12)\
VZERO(psi_20) VZERO(psi_21) VZERO(psi_22) \
VZERO(psi_30) VZERO(psi_31) VZERO(psi_32) \
VMADD_II_MIR(one,UChi_10,psi_20,psi_20) \
VMADD_II_MIR(one,UChi_11,psi_21,psi_21) \
VMADD_II_MIR(one,UChi_12,psi_22,psi_22) \
VMADD_II_MIR(one,UChi_00,psi_30,psi_30) \
VMADD_II_MIR(one,UChi_01,psi_31,psi_31) \
VMADD_II_MIR(one,UChi_02,psi_32,psi_32) \
); \
}
#define XM_RECON { \
asm(\
VONE(one)\
VMOV(psi_00,UChi_00) VMOV(psi_01,UChi_01) VMOV(psi_02,UChi_02)\
VMOV(psi_10,UChi_10) VMOV(psi_11,UChi_11) VMOV(psi_12,UChi_12)\
VZERO(psi_20) VZERO(psi_21) VZERO(psi_22) \
VZERO(psi_30) VZERO(psi_31) VZERO(psi_32) \
VMADD_MII_IR(one,UChi_10,psi_20,psi_20) \
VMADD_MII_IR(one,UChi_11,psi_21,psi_21) \
VMADD_MII_IR(one,UChi_12,psi_22,psi_22) \
VMADD_MII_IR(one,UChi_00,psi_30,psi_30) \
VMADD_MII_IR(one,UChi_01,psi_31,psi_31) \
VMADD_MII_IR(one,UChi_02,psi_32,psi_32) \
); \
}
#define XP_RECON_ACCUM { \
asm(\
VONE(one)\
VADD(psi_00,UChi_00,psi_00) VADD(psi_01,UChi_01,psi_01) VADD(psi_02,UChi_02,psi_02) \
VADD(psi_10,UChi_10,psi_10) VADD(psi_11,UChi_11,psi_11) VADD(psi_12,UChi_12,psi_12) \
VMADD_II_MIR(one,UChi_10,psi_20,psi_20) \
VMADD_II_MIR(one,UChi_11,psi_21,psi_21) \
VMADD_II_MIR(one,UChi_12,psi_22,psi_22) \
VMADD_II_MIR(one,UChi_00,psi_30,psi_30) \
VMADD_II_MIR(one,UChi_01,psi_31,psi_31) \
VMADD_II_MIR(one,UChi_02,psi_32,psi_32) \
); \
}
#define XM_RECON_ACCUM { \
asm(\
VONE(one)\
VADD(psi_00,UChi_00,psi_00) VADD(psi_01,UChi_01,psi_01) VADD(psi_02,UChi_02,psi_02) \
VADD(psi_10,UChi_10,psi_10) VADD(psi_11,UChi_11,psi_11) VADD(psi_12,UChi_12,psi_12) \
VMADD_MII_IR(one,UChi_10,psi_20,psi_20) \
VMADD_MII_IR(one,UChi_11,psi_21,psi_21) \
VMADD_MII_IR(one,UChi_12,psi_22,psi_22) \
VMADD_MII_IR(one,UChi_00,psi_30,psi_30) \
VMADD_MII_IR(one,UChi_01,psi_31,psi_31) \
VMADD_MII_IR(one,UChi_02,psi_32,psi_32) \
); \
}
// fspin(2)+=hspin(1);
// fspin(3)-=hspin(0);
#define YP_RECON_ACCUM {\
asm(\
VADD(psi_00,UChi_00,psi_00) VADD(psi_01,UChi_01,psi_01) VADD(psi_02,UChi_02,psi_02) \
VADD(psi_10,UChi_10,psi_10) VADD(psi_11,UChi_11,psi_11) VADD(psi_12,UChi_12,psi_12) \
VADD(psi_20,UChi_10,psi_20) VADD(psi_21,UChi_11,psi_21) VADD(psi_22,UChi_12,psi_22) \
VSUB(psi_30,UChi_00,psi_30) VSUB(psi_31,UChi_01,psi_31) VSUB(psi_32,UChi_02,psi_32) \
);\
}
#define YM_RECON_ACCUM {\
asm(\
VADD(psi_00,UChi_00,psi_00) VADD(psi_01,UChi_01,psi_01) VADD(psi_02,UChi_02,psi_02) \
VADD(psi_10,UChi_10,psi_10) VADD(psi_11,UChi_11,psi_11) VADD(psi_12,UChi_12,psi_12) \
VSUB(psi_20,UChi_10,psi_20) VSUB(psi_21,UChi_11,psi_21) VSUB(psi_22,UChi_12,psi_22) \
VADD(psi_30,UChi_00,psi_30) VADD(psi_31,UChi_01,psi_31) VADD(psi_32,UChi_02,psi_32) \
);\
}
// fspin(2)-=timesI(hspin(0));
// fspin(3)+=timesI(hspin(1));
#define ZP_RECON_ACCUM {\
asm(\
VONE(one)\
VADD(psi_00,UChi_00,psi_00) VADD(psi_01,UChi_01,psi_01) VADD(psi_02,UChi_02,psi_02) \
VADD(psi_10,UChi_10,psi_10) VADD(psi_11,UChi_11,psi_11) VADD(psi_12,UChi_12,psi_12) \
VMADD_II_MIR(one,UChi_00,psi_20,psi_20) \
VMADD_II_MIR(one,UChi_01,psi_21,psi_21) \
VMADD_II_MIR(one,UChi_02,psi_22,psi_22) \
VMADD_MII_IR(one,UChi_10,psi_30,psi_30) \
VMADD_MII_IR(one,UChi_11,psi_31,psi_31) \
VMADD_MII_IR(one,UChi_12,psi_32,psi_32) \
);\
}
#define ZM_RECON_ACCUM {\
asm(\
VONE(one)\
VADD(psi_00,UChi_00,psi_00) VADD(psi_01,UChi_01,psi_01) VADD(psi_02,UChi_02,psi_02) \
VADD(psi_10,UChi_10,psi_10) VADD(psi_11,UChi_11,psi_11) VADD(psi_12,UChi_12,psi_12) \
VMADD_MII_IR(one,UChi_00,psi_20,psi_20) \
VMADD_MII_IR(one,UChi_01,psi_21,psi_21) \
VMADD_MII_IR(one,UChi_02,psi_22,psi_22) \
VMADD_II_MIR(one,UChi_10,psi_30,psi_30) \
VMADD_II_MIR(one,UChi_11,psi_31,psi_31) \
VMADD_II_MIR(one,UChi_12,psi_32,psi_32) \
);\
}
// fspin(2)+=hspin(0);
// fspin(3)+=hspin(1);
#define TP_RECON_ACCUM {\
asm(\
VADD(psi_00,UChi_00,psi_00) VADD(psi_01,UChi_01,psi_01) VADD(psi_02,UChi_02,psi_02) \
VADD(psi_10,UChi_10,psi_10) VADD(psi_11,UChi_11,psi_11) VADD(psi_12,UChi_12,psi_12) \
VADD(psi_20,UChi_00,psi_20) VADD(psi_21,UChi_01,psi_21) VADD(psi_22,UChi_02,psi_22) \
VADD(psi_30,UChi_10,psi_30) VADD(psi_31,UChi_11,psi_31) VADD(psi_32,UChi_12,psi_32) \
);\
}
#define TM_RECON_ACCUM {\
asm(\
VONE(one)\
VADD(psi_00,UChi_00,psi_00) VADD(psi_01,UChi_01,psi_01) VADD(psi_02,UChi_02,psi_02) \
VADD(psi_10,UChi_10,psi_10) VADD(psi_11,UChi_11,psi_11) VADD(psi_12,UChi_12,psi_12) \
VSUB(psi_20,UChi_00,psi_20) VSUB(psi_21,UChi_01,psi_21) VSUB(psi_22,UChi_02,psi_22) \
VSUB(psi_30,UChi_10,psi_30) VSUB(psi_31,UChi_11,psi_31) VSUB(psi_32,UChi_12,psi_32) \
);\
}
uint64_t GetPFInfo(int nent,int plocal);
uint64_t GetInfo(int ptype,int local,int perm,int Xp,int ent,int plocal);
#define COMPLEX_TYPE int;
int signs[4];
void testme(int osites,int ssU)
{
int local,perm, ptype;
uint64_t base;
uint64_t basep;
const uint64_t plocal =(uint64_t) & in._odata[0];
// vComplexF isigns[2] = { signs[0], signs[1] };
//COMPLEX_TYPE is vComplexF of vComplexD depending
//on the chosen precision
COMPLEX_TYPE *isigns = &signs[0];
MASK_REGS;
int nmax=osites;
for(int site=0;site<Ns;site++) {
int sU =ssU;
int ssn=ssU+1;
if(ssn>=nmax) ssn=0;
int sUn=ssn;
for(int s=0;s<Ls;s++) {
ss =sU*Ls+s;
ssn=sUn*Ls+s;
////////////////////////////////
// Xp
////////////////////////////////
int ent=ss*8;// 2*Ndim
int nent=ssn*8;
PF_GAUGE(Xp);
base = GetInfo(ptype,local,perm,Xp,ent,plocal); ent++;
PREFETCH1_CHIMU(base);
basep = GetPFInfo(nent,plocal); nent++;
if ( local ) {
LOAD64(%r10,isigns);
#ifdef KERNEL_DAG
XP_PROJMEM(base);
#else
XM_PROJMEM(base);
#endif
MAYBEPERM(PERMUTE_DIR3,perm);
} else {
LOAD_CHI(base);
}
base = GetInfo(ptype,local,perm,Yp,ent,plocal); ent++;
PREFETCH_CHIMU(base);
{
MULT_2SPIN_DIR_PFXP(Xp,basep);
}
LOAD64(%r10,isigns);
#ifdef KERNEL_DAG
XP_RECON;
#else
XM_RECON;
#endif
////////////////////////////////
// Yp
////////////////////////////////
basep = GetPFInfo(nent,plocal); nent++;
if ( local ) {
LOAD64(%r10,isigns); // times i => shuffle and xor the real part sign bit
#ifdef KERNEL_DAG
YP_PROJMEM(base);
#else
YM_PROJMEM(base);
#endif
MAYBEPERM(PERMUTE_DIR2,perm);
} else {
LOAD_CHI(base);
}
base = GetInfo(ptype,local,perm,Zp,ent,plocal); ent++;
PREFETCH_CHIMU(base);
{
MULT_2SPIN_DIR_PFYP(Yp,basep);
}
LOAD64(%r10,isigns); // times i => shuffle and xor the real part sign bit
#ifdef KERNEL_DAG
YP_RECON_ACCUM;
#else
YM_RECON_ACCUM;
#endif
////////////////////////////////
// Zp
////////////////////////////////
basep = GetPFInfo(nent,plocal); nent++;
if ( local ) {
LOAD64(%r10,isigns); // times i => shuffle and xor the real part sign bit
#ifdef KERNEL_DAG
ZP_PROJMEM(base);
#else
ZM_PROJMEM(base);
#endif
MAYBEPERM(PERMUTE_DIR1,perm);
} else {
LOAD_CHI(base);
}
base = GetInfo(ptype,local,perm,Tp,ent,plocal); ent++;
PREFETCH_CHIMU(base);
{
MULT_2SPIN_DIR_PFZP(Zp,basep);
}
LOAD64(%r10,isigns); // times i => shuffle and xor the real part sign bit
#ifdef KERNEL_DAG
ZP_RECON_ACCUM;
#else
ZM_RECON_ACCUM;
#endif
////////////////////////////////
// Tp
////////////////////////////////
basep = GetPFInfo(nent,plocal); nent++;
if ( local ) {
LOAD64(%r10,isigns); // times i => shuffle and xor the real part sign bit
#ifdef KERNEL_DAG
TP_PROJMEM(base);
#else
TM_PROJMEM(base);
#endif
MAYBEPERM(PERMUTE_DIR0,perm);
} else {
LOAD_CHI(base);
}
base = GetInfo(ptype,local,perm,Xm,ent,plocal); ent++;
PREFETCH_CHIMU(base);
{
MULT_2SPIN_DIR_PFTP(Tp,basep);
}
LOAD64(%r10,isigns); // times i => shuffle and xor the real part sign bit
#ifdef KERNEL_DAG
TP_RECON_ACCUM;
#else
TM_RECON_ACCUM;
#endif
////////////////////////////////
// Xm
////////////////////////////////
#ifndef STREAM_STORE
basep= (uint64_t) &out._odata[ss];
#endif
// basep= GetPFInfo(nent,plocal); nent++;
if ( local ) {
LOAD64(%r10,isigns); // times i => shuffle and xor the real part sign bit
#ifdef KERNEL_DAG
XM_PROJMEM(base);
#else
XP_PROJMEM(base);
#endif
MAYBEPERM(PERMUTE_DIR3,perm);
} else {
LOAD_CHI(base);
}
base = GetInfo(ptype,local,perm,Ym,ent,plocal); ent++;
PREFETCH_CHIMU(base);
{
MULT_2SPIN_DIR_PFXM(Xm,basep);
}
LOAD64(%r10,isigns); // times i => shuffle and xor the real part sign bit
#ifdef KERNEL_DAG
XM_RECON_ACCUM;
#else
XP_RECON_ACCUM;
#endif
////////////////////////////////
// Ym
////////////////////////////////
basep= GetPFInfo(nent,plocal); nent++;
if ( local ) {
LOAD64(%r10,isigns); // times i => shuffle and xor the real part sign bit
#ifdef KERNEL_DAG
YM_PROJMEM(base);
#else
YP_PROJMEM(base);
#endif
MAYBEPERM(PERMUTE_DIR2,perm);
} else {
LOAD_CHI(base);
}
base = GetInfo(ptype,local,perm,Zm,ent,plocal); ent++;
PREFETCH_CHIMU(base);
{
MULT_2SPIN_DIR_PFYM(Ym,basep);
}
LOAD64(%r10,isigns); // times i => shuffle and xor the real part sign bit
#ifdef KERNEL_DAG
YM_RECON_ACCUM;
#else
YP_RECON_ACCUM;
#endif
////////////////////////////////
// Zm
////////////////////////////////
basep= GetPFInfo(nent,plocal); nent++;
if ( local ) {
LOAD64(%r10,isigns); // times i => shuffle and xor the real part sign bit
#ifdef KERNEL_DAG
ZM_PROJMEM(base);
#else
ZP_PROJMEM(base);
#endif
MAYBEPERM(PERMUTE_DIR1,perm);
} else {
LOAD_CHI(base);
}
base = GetInfo(ptype,local,perm,Tm,ent,plocal); ent++;
PREFETCH_CHIMU(base);
{
MULT_2SPIN_DIR_PFZM(Zm,basep);
}
LOAD64(%r10,isigns); // times i => shuffle and xor the real part sign bit
#ifdef KERNEL_DAG
ZM_RECON_ACCUM;
#else
ZP_RECON_ACCUM;
#endif
////////////////////////////////
// Tm
////////////////////////////////
basep= GetPFInfo(nent,plocal); nent++;
if ( local ) {
LOAD64(%r10,isigns); // times i => shuffle and xor the real part sign bit
#ifdef KERNEL_DAG
TM_PROJMEM(base);
#else
TP_PROJMEM(base);
#endif
MAYBEPERM(PERMUTE_DIR0,perm);
} else {
LOAD_CHI(base);
}
base= (uint64_t) &out._odata[ss];
#ifndef STREAM_STORE
PREFETCH_CHIMU(base);
#endif
{
MULT_2SPIN_DIR_PFTM(Tm,basep);
}
LOAD64(%r10,isigns); // times i => shuffle and xor the real part sign bit
#ifdef KERNEL_DAG
TM_RECON_ACCUM;
#else
TP_RECON_ACCUM;
#endif
basep= GetPFInfo(nent,plocal); nent++;
SAVE_RESULT(base,basep);
}
ssU++;
}
}
#endif