1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-16 02:35:36 +00:00
Grid/lib/simd/Grid_generic.h
2017-05-19 16:39:36 +01:00

531 lines
12 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/simd/Grid_generic.h
Copyright (C) 2015
Copyright (C) 2017
Author: Antonin Portelli <antonin.portelli@me.com>
Andrew Lawson <andrew.lawson1991@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include "Grid_generic_types.h"
namespace Grid {
namespace Optimization {
struct Vsplat{
// Complex
template <typename T>
inline vec<T> operator()(T a, T b){
vec<T> out;
VECTOR_FOR(i, W<T>::r, 2)
{
out.v[i] = a;
out.v[i+1] = b;
}
return out;
}
// Real
template <typename T>
inline vec<T> operator()(T a){
vec<T> out;
VECTOR_FOR(i, W<T>::r, 1)
{
out.v[i] = a;
}
return out;
}
};
struct Vstore{
// Real
template <typename T>
inline void operator()(vec<T> a, T *D){
*((vec<T> *)D) = a;
}
};
struct Vstream{
// Real
template <typename T>
inline void operator()(T * a, vec<T> b){
*((vec<T> *)a) = b;
}
};
struct Vset{
// Complex
template <typename T>
inline vec<T> operator()(std::complex<T> *a){
vec<T> out;
VECTOR_FOR(i, W<T>::c, 1)
{
out.v[2*i] = a[i].real();
out.v[2*i+1] = a[i].imag();
}
return out;
}
// Real
template <typename T>
inline vec<T> operator()(T *a){
vec<T> out;
out = *((vec<T> *)a);
return out;
}
};
/////////////////////////////////////////////////////
// Arithmetic operations
/////////////////////////////////////////////////////
struct Sum{
// Complex/Real
template <typename T>
inline vec<T> operator()(vec<T> a, vec<T> b){
vec<T> out;
VECTOR_FOR(i, W<T>::r, 1)
{
out.v[i] = a.v[i] + b.v[i];
}
return out;
}
};
struct Sub{
// Complex/Real
template <typename T>
inline vec<T> operator()(vec<T> a, vec<T> b){
vec<T> out;
VECTOR_FOR(i, W<T>::r, 1)
{
out.v[i] = a.v[i] - b.v[i];
}
return out;
}
};
struct Mult{
// Real
template <typename T>
inline vec<T> operator()(vec<T> a, vec<T> b){
vec<T> out;
VECTOR_FOR(i, W<T>::r, 1)
{
out.v[i] = a.v[i]*b.v[i];
}
return out;
}
};
#define cmul(a, b, c, i)\
c[i] = a[i]*b[i] - a[i+1]*b[i+1];\
c[i+1] = a[i]*b[i+1] + a[i+1]*b[i];
struct MultRealPart{
template <typename T>
inline vec<T> operator()(vec<T> a, vec<T> b){
vec<T> out;
VECTOR_FOR(i, W<T>::c, 1)
{
out.v[2*i] = a.v[2*i]*b.v[2*i];
out.v[2*i+1] = a.v[2*i]*b.v[2*i+1];
}
return out;
}
};
struct MaddRealPart{
template <typename T>
inline vec<T> operator()(vec<T> a, vec<T> b, vec<T> c){
vec<T> out;
VECTOR_FOR(i, W<T>::c, 1)
{
out.v[2*i] = a.v[2*i]*b.v[2*i] + c.v[2*i];
out.v[2*i+1] = a.v[2*i]*b.v[2*i+1] + c.v[2*i+1];
}
return out;
}
};
struct MultComplex{
// Complex
template <typename T>
inline vec<T> operator()(vec<T> a, vec<T> b){
vec<T> out;
VECTOR_FOR(i, W<T>::c, 1)
{
cmul(a.v, b.v, out.v, 2*i);
}
return out;
}
};
#undef cmul
struct Div{
// Real
template <typename T>
inline vec<T> operator()(vec<T> a, vec<T> b){
vec<T> out;
VECTOR_FOR(i, W<T>::r, 1)
{
out.v[i] = a.v[i]/b.v[i];
}
return out;
}
};
#define conj(a, b, i)\
b[i] = a[i];\
b[i+1] = -a[i+1];
struct Conj{
// Complex
template <typename T>
inline vec<T> operator()(vec<T> a){
vec<T> out;
VECTOR_FOR(i, W<T>::c, 1)
{
conj(a.v, out.v, 2*i);
}
return out;
}
};
#undef conj
#define timesmi(a, b, i)\
b[i] = a[i+1];\
b[i+1] = -a[i];
struct TimesMinusI{
// Complex
template <typename T>
inline vec<T> operator()(vec<T> a, vec<T> b){
vec<T> out;
VECTOR_FOR(i, W<T>::c, 1)
{
timesmi(a.v, out.v, 2*i);
}
return out;
}
};
#undef timesmi
#define timesi(a, b, i)\
b[i] = -a[i+1];\
b[i+1] = a[i];
struct TimesI{
// Complex
template <typename T>
inline vec<T> operator()(vec<T> a, vec<T> b){
vec<T> out;
VECTOR_FOR(i, W<T>::c, 1)
{
timesi(a.v, out.v, 2*i);
}
return out;
}
};
#undef timesi
struct PrecisionChange {
static inline vech StoH (const vecf &a,const vecf &b) {
vech ret;
#ifdef USE_FP16
vech *ha = (vech *)&a;
vech *hb = (vech *)&b;
const int nf = W<float>::r;
// VECTOR_FOR(i, nf,1){ ret.v[i] = ( (uint16_t *) &a.v[i])[1] ; }
// VECTOR_FOR(i, nf,1){ ret.v[i+nf] = ( (uint16_t *) &b.v[i])[1] ; }
VECTOR_FOR(i, nf,1){ ret.v[i] = ha->v[2*i+1]; }
VECTOR_FOR(i, nf,1){ ret.v[i+nf] = hb->v[2*i+1]; }
#else
assert(0);
#endif
return ret;
}
static inline void HtoS (vech h,vecf &sa,vecf &sb) {
#ifdef USE_FP16
const int nf = W<float>::r;
const int nh = W<uint16_t>::r;
vech *ha = (vech *)&sa;
vech *hb = (vech *)&sb;
VECTOR_FOR(i, nf, 1){ sb.v[i]= sa.v[i] = 0; }
// VECTOR_FOR(i, nf, 1){ ( (uint16_t *) (&sa.v[i]))[1] = h.v[i];}
// VECTOR_FOR(i, nf, 1){ ( (uint16_t *) (&sb.v[i]))[1] = h.v[i+nf];}
VECTOR_FOR(i, nf, 1){ ha->v[2*i+1]=h.v[i]; }
VECTOR_FOR(i, nf, 1){ hb->v[2*i+1]=h.v[i+nf]; }
#else
assert(0);
#endif
}
static inline vecf DtoS (vecd a,vecd b) {
const int nd = W<double>::r;
const int nf = W<float>::r;
vecf ret;
VECTOR_FOR(i, nd,1){ ret.v[i] = a.v[i] ; }
VECTOR_FOR(i, nd,1){ ret.v[i+nd] = b.v[i] ; }
return ret;
}
static inline void StoD (vecf s,vecd &a,vecd &b) {
const int nd = W<double>::r;
VECTOR_FOR(i, nd,1){ a.v[i] = s.v[i] ; }
VECTOR_FOR(i, nd,1){ b.v[i] = s.v[i+nd] ; }
}
static inline vech DtoH (vecd a,vecd b,vecd c,vecd d) {
vecf sa,sb;
sa = DtoS(a,b);
sb = DtoS(c,d);
return StoH(sa,sb);
}
static inline void HtoD (vech h,vecd &a,vecd &b,vecd &c,vecd &d) {
vecf sa,sb;
HtoS(h,sa,sb);
StoD(sa,a,b);
StoD(sb,c,d);
}
};
//////////////////////////////////////////////
// Exchange support
struct Exchange{
template <typename T,int n>
static inline void ExchangeN(vec<T> &out1,vec<T> &out2,vec<T> &in1,vec<T> &in2){
const int w = W<T>::r;
unsigned int mask = w >> (n + 1);
// std::cout << " Exchange "<<n<<" nsimd "<<w<<" mask 0x" <<std::hex<<mask<<std::dec<<std::endl;
VECTOR_FOR(i, w, 1) {
int j1 = i&(~mask);
if ( (i&mask) == 0 ) { out1.v[i]=in1.v[j1];}
else { out1.v[i]=in2.v[j1];}
int j2 = i|mask;
if ( (i&mask) == 0 ) { out2.v[i]=in1.v[j2];}
else { out2.v[i]=in2.v[j2];}
}
}
template <typename T>
static inline void Exchange0(vec<T> &out1,vec<T> &out2,vec<T> &in1,vec<T> &in2){
ExchangeN<T,0>(out1,out2,in1,in2);
};
template <typename T>
static inline void Exchange1(vec<T> &out1,vec<T> &out2,vec<T> &in1,vec<T> &in2){
ExchangeN<T,1>(out1,out2,in1,in2);
};
template <typename T>
static inline void Exchange2(vec<T> &out1,vec<T> &out2,vec<T> &in1,vec<T> &in2){
ExchangeN<T,2>(out1,out2,in1,in2);
};
template <typename T>
static inline void Exchange3(vec<T> &out1,vec<T> &out2,vec<T> &in1,vec<T> &in2){
ExchangeN<T,3>(out1,out2,in1,in2);
};
};
//////////////////////////////////////////////
// Some Template specialization
#define perm(a, b, n, w)\
unsigned int _mask = w >> (n + 1);\
VECTOR_FOR(i, w, 1)\
{\
b[i] = a[i^_mask];\
}
#define DECL_PERMUTE_N(n)\
template <typename T>\
static inline vec<T> Permute##n(vec<T> in) {\
vec<T> out;\
perm(in.v, out.v, n, W<T>::r);\
return out;\
}
struct Permute{
DECL_PERMUTE_N(0);
DECL_PERMUTE_N(1);
DECL_PERMUTE_N(2);
DECL_PERMUTE_N(3);
};
#undef perm
#undef DECL_PERMUTE_N
#define rot(a, b, n, w)\
VECTOR_FOR(i, w, 1)\
{\
b[i] = a[(i + n)%w];\
}
struct Rotate{
template <int n, typename T> static inline vec<T> tRotate(vec<T> in){
return rotate(in, n);
}
template <typename T>
static inline vec<T> rotate(vec<T> in, int n){
vec<T> out;
rot(in.v, out.v, n, W<T>::r);
return out;
}
};
#undef rot
#define acc(v, a, off, step, n)\
for (unsigned int i = off; i < n; i += step)\
{\
a += v[i];\
}
template <typename Out_type, typename In_type>
struct Reduce{
//Need templated class to overload output type
//General form must generate error if compiled
inline Out_type operator()(In_type in){
printf("Error, using wrong Reduce function\n");
exit(1);
return 0;
}
};
//Complex float Reduce
template <>
inline Grid::ComplexF Reduce<Grid::ComplexF, vecf>::operator()(vecf in){
float a = 0.f, b = 0.f;
acc(in.v, a, 0, 2, W<float>::r);
acc(in.v, b, 1, 2, W<float>::r);
return Grid::ComplexF(a, b);
}
//Real float Reduce
template<>
inline Grid::RealF Reduce<Grid::RealF, vecf>::operator()(vecf in){
float a = 0.;
acc(in.v, a, 0, 1, W<float>::r);
return a;
}
//Complex double Reduce
template<>
inline Grid::ComplexD Reduce<Grid::ComplexD, vecd>::operator()(vecd in){
double a = 0., b = 0.;
acc(in.v, a, 0, 2, W<double>::r);
acc(in.v, b, 1, 2, W<double>::r);
return Grid::ComplexD(a, b);
}
//Real double Reduce
template<>
inline Grid::RealD Reduce<Grid::RealD, vecd>::operator()(vecd in){
double a = 0.f;
acc(in.v, a, 0, 1, W<double>::r);
return a;
}
//Integer Reduce
template<>
inline Integer Reduce<Integer, veci>::operator()(veci in){
Integer a = 0;
acc(in.v, a, 0, 1, W<Integer>::r);
return a;
}
#undef acc // EIGEN compatibility
}
//////////////////////////////////////////////////////////////////////////////////////
// Here assign types
typedef Optimization::vech SIMD_Htype; // Reduced precision type
typedef Optimization::vecf SIMD_Ftype; // Single precision type
typedef Optimization::vecd SIMD_Dtype; // Double precision type
typedef Optimization::veci SIMD_Itype; // Integer type
// prefetch utilities
inline void v_prefetch0(int size, const char *ptr){};
inline void prefetch_HINT_T0(const char *ptr){};
// Function name aliases
typedef Optimization::Vsplat VsplatSIMD;
typedef Optimization::Vstore VstoreSIMD;
typedef Optimization::Vset VsetSIMD;
typedef Optimization::Vstream VstreamSIMD;
template <typename S, typename T> using ReduceSIMD = Optimization::Reduce<S,T>;
// Arithmetic operations
typedef Optimization::Sum SumSIMD;
typedef Optimization::Sub SubSIMD;
typedef Optimization::Div DivSIMD;
typedef Optimization::Mult MultSIMD;
typedef Optimization::MultComplex MultComplexSIMD;
typedef Optimization::MultRealPart MultRealPartSIMD;
typedef Optimization::MaddRealPart MaddRealPartSIMD;
typedef Optimization::Conj ConjSIMD;
typedef Optimization::TimesMinusI TimesMinusISIMD;
typedef Optimization::TimesI TimesISIMD;
}