1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-16 02:35:36 +00:00
Grid/lib/tensors/Tensor_class.h
2017-06-19 22:03:03 +01:00

486 lines
17 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/tensors/Tensor_class.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_MATH_TENSORS_H
#define GRID_MATH_TENSORS_H
namespace Grid {
///////////////////////////////////////////////////
// Scalar, Vector, Matrix objects.
// These can be composed to form tensor products of internal indices.
///////////////////////////////////////////////////
// It is useful to NOT have any constructors
// so that these classes assert "is_pod<class> == true"
// because then the standard C++ valarray container eliminates fill overhead on
// new allocation and
// non-move copying.
//
// However note that doing this eliminates some syntactical sugar such as
// calling the constructor explicitly or implicitly
//
class GridTensorBase {};
template <class vtype>
class iScalar {
public:
vtype _internal;
typedef vtype element;
typedef typename GridTypeMapper<vtype>::scalar_type scalar_type;
typedef typename GridTypeMapper<vtype>::vector_type vector_type;
typedef typename GridTypeMapper<vtype>::vector_typeD vector_typeD;
typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v;
typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object;
typedef iScalar<tensor_reduced_v> tensor_reduced;
typedef iScalar<recurse_scalar_object> scalar_object;
// substitutes a real or complex version with same tensor structure
typedef iScalar<typename GridTypeMapper<vtype>::Complexified> Complexified;
typedef iScalar<typename GridTypeMapper<vtype>::Realified> Realified;
// get double precision version
typedef iScalar<typename GridTypeMapper<vtype>::DoublePrecision> DoublePrecision;
enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1 };
// Scalar no action
// template<int Level> using tensor_reduce_level = typename
// iScalar<GridTypeMapper<vtype>::tensor_reduce_level<Level> >;
iScalar() = default;
/*
iScalar(const iScalar<vtype> &copyme)=default;
iScalar(iScalar<vtype> &&copyme)=default;
iScalar<vtype> & operator= (const iScalar<vtype> &copyme) = default;
iScalar<vtype> & operator= (iScalar<vtype> &&copyme) = default;
*/
// template<int N=0>
// iScalar(EnableIf<isSIMDvectorized<vector_type>, vector_type> s) : _internal(s){}; // recurse down and hit the constructor for vector_type
iScalar(scalar_type s) : _internal(s){}; // recurse down and hit the constructor for vector_type
iScalar(const Zero &z) { *this = zero; };
iScalar<vtype> &operator=(const Zero &hero) {
zeroit(*this);
return *this;
}
friend strong_inline void vstream(iScalar<vtype> &out,
const iScalar<vtype> &in) {
vstream(out._internal, in._internal);
}
friend strong_inline void vbroadcast(iScalar<vtype> &out,const iScalar<vtype> &in,int lane){
vbroadcast(out._internal,in._internal,lane);
}
friend strong_inline void zeroit(iScalar<vtype> &that){
zeroit(that._internal);
}
friend strong_inline void prefetch(iScalar<vtype> &that) {
prefetch(that._internal);
}
friend strong_inline void permute(iScalar<vtype> &out,
const iScalar<vtype> &in, int permutetype) {
permute(out._internal, in._internal, permutetype);
}
friend strong_inline void rotate(iScalar<vtype> &out,const iScalar<vtype> &in,int rot){
rotate(out._internal,in._internal,rot);
}
friend strong_inline void exchange(iScalar<vtype> &out1,iScalar<vtype> &out2,
const iScalar<vtype> &in1,const iScalar<vtype> &in2,int type){
exchange(out1._internal,out2._internal,
in1._internal, in2._internal,type);
}
// Unary negation
friend strong_inline iScalar<vtype> operator-(const iScalar<vtype> &r) {
iScalar<vtype> ret;
ret._internal = -r._internal;
return ret;
}
// *=,+=,-= operators inherit from corresponding "*,-,+" behaviour
strong_inline iScalar<vtype> &operator*=(const iScalar<vtype> &r) {
*this = (*this) * r;
return *this;
}
strong_inline iScalar<vtype> &operator-=(const iScalar<vtype> &r) {
*this = (*this) - r;
return *this;
}
strong_inline iScalar<vtype> &operator+=(const iScalar<vtype> &r) {
*this = (*this) + r;
return *this;
}
strong_inline vtype &operator()(void) { return _internal; }
strong_inline const vtype &operator()(void) const { return _internal; }
// Type casts meta programmed, must be pure scalar to match TensorRemove
template <class U = vtype, class V = scalar_type, IfComplex<V> = 0, IfNotSimd<U> = 0>
operator ComplexF() const {
return (TensorRemove(_internal));
};
template <class U = vtype, class V = scalar_type, IfComplex<V> = 0, IfNotSimd<U> = 0>
operator ComplexD() const {
return (TensorRemove(_internal));
};
// template<class U=vtype,class V=scalar_type,IfComplex<V> = 0,IfNotSimd<U> =
// 0> operator RealD () const { return(real(TensorRemove(_internal))); }
template <class U = vtype, class V = scalar_type, IfReal<V> = 0,IfNotSimd<U> = 0>
operator RealD() const {
return TensorRemove(_internal);
}
template <class U = vtype, class V = scalar_type, IfInteger<V> = 0, IfNotSimd<U> = 0>
operator Integer() const {
return Integer(TensorRemove(_internal));
}
// convert from a something to a scalar via constructor of something arg
template <class T, typename std::enable_if<!isGridTensor<T>::value, T>::type * = nullptr>
strong_inline iScalar<vtype> operator=(T arg) {
_internal = arg;
return *this;
}
// Convert elements
template <class ttype>
strong_inline iScalar<vtype> operator=(iScalar<ttype> &&arg) {
_internal = arg._internal;
return *this;
}
friend std::ostream &operator<<(std::ostream &stream,const iScalar<vtype> &o) {
stream << "S {" << o._internal << "}";
return stream;
};
};
///////////////////////////////////////////////////////////
// Allows to turn scalar<scalar<scalar<double>>>> back to double.
///////////////////////////////////////////////////////////
template <class T>
strong_inline typename std::enable_if<!isGridTensor<T>::value, T>::type
TensorRemove(T arg) {
return arg;
}
template <class vtype>
strong_inline auto TensorRemove(iScalar<vtype> arg)
-> decltype(TensorRemove(arg._internal)) {
return TensorRemove(arg._internal);
}
template <class vtype, int N>
class iVector {
public:
vtype _internal[N];
typedef vtype element;
typedef typename GridTypeMapper<vtype>::scalar_type scalar_type;
typedef typename GridTypeMapper<vtype>::vector_type vector_type;
typedef typename GridTypeMapper<vtype>::vector_typeD vector_typeD;
typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v;
typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object;
typedef iScalar<tensor_reduced_v> tensor_reduced;
typedef iVector<recurse_scalar_object, N> scalar_object;
// substitutes a real or complex version with same tensor structure
typedef iVector<typename GridTypeMapper<vtype>::Complexified, N> Complexified;
typedef iVector<typename GridTypeMapper<vtype>::Realified, N> Realified;
// get double precision version
typedef iVector<typename GridTypeMapper<vtype>::DoublePrecision, N> DoublePrecision;
template <class T, typename std::enable_if<!isGridTensor<T>::value, T>::type
* = nullptr>
strong_inline auto operator=(T arg) -> iVector<vtype, N> {
zeroit(*this);
for (int i = 0; i < N; i++) _internal[i] = arg;
return *this;
}
enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1 };
iVector(const Zero &z) { *this = zero; };
iVector() = default;
/*
iVector(const iVector<vtype,N> &copyme)=default;
iVector(iVector<vtype,N> &&copyme)=default;
iVector<vtype,N> & operator= (const iVector<vtype,N> &copyme) = default;
iVector<vtype,N> & operator= (iVector<vtype,N> &&copyme) = default;
*/
iVector<vtype, N> &operator=(const Zero &hero) {
zeroit(*this);
return *this;
}
friend strong_inline void zeroit(iVector<vtype, N> &that) {
for (int i = 0; i < N; i++) {
zeroit(that._internal[i]);
}
}
friend strong_inline void prefetch(iVector<vtype, N> &that) {
for (int i = 0; i < N; i++) prefetch(that._internal[i]);
}
friend strong_inline void vstream(iVector<vtype, N> &out,
const iVector<vtype, N> &in) {
for (int i = 0; i < N; i++) {
vstream(out._internal[i], in._internal[i]);
}
}
friend strong_inline void vbroadcast(iVector<vtype,N> &out,const iVector<vtype,N> &in,int lane){
for(int i=0;i<N;i++){
vbroadcast(out._internal[i],in._internal[i],lane);
}
}
friend strong_inline void permute(iVector<vtype,N> &out,const iVector<vtype,N> &in,int permutetype){
for(int i=0;i<N;i++){
permute(out._internal[i],in._internal[i],permutetype);
}
}
friend strong_inline void rotate(iVector<vtype,N> &out,const iVector<vtype,N> &in,int rot){
for(int i=0;i<N;i++){
rotate(out._internal[i],in._internal[i],rot);
}
}
friend strong_inline void exchange(iVector<vtype,N> &out1,iVector<vtype,N> &out2,
const iVector<vtype,N> &in1,const iVector<vtype,N> &in2,int type){
for(int i=0;i<N;i++){
exchange(out1._internal[i],out2._internal[i],
in1._internal[i], in2._internal[i],type);
}
}
// Unary negation
friend strong_inline iVector<vtype, N> operator-(const iVector<vtype, N> &r) {
iVector<vtype, N> ret;
for (int i = 0; i < N; i++) ret._internal[i] = -r._internal[i];
return ret;
}
// *=,+=,-= operators inherit from corresponding "*,-,+" behaviour
strong_inline iVector<vtype, N> &operator*=(const iScalar<vtype> &r) {
*this = (*this) * r;
return *this;
}
strong_inline iVector<vtype, N> &operator-=(const iVector<vtype, N> &r) {
*this = (*this) - r;
return *this;
}
strong_inline iVector<vtype, N> &operator+=(const iVector<vtype, N> &r) {
*this = (*this) + r;
return *this;
}
strong_inline vtype &operator()(int i) { return _internal[i]; }
strong_inline const vtype &operator()(int i) const { return _internal[i]; }
friend std::ostream &operator<<(std::ostream &stream,
const iVector<vtype, N> &o) {
stream << "V<" << N << ">{";
for (int i = 0; i < N; i++) {
stream << o._internal[i];
if (i < N - 1) stream << ",";
}
stream << "}";
return stream;
};
// strong_inline vtype && operator ()(int i) {
// return _internal[i];
// }
};
template <class vtype, int N>
class iMatrix {
public:
vtype _internal[N][N];
typedef vtype element;
typedef typename GridTypeMapper<vtype>::scalar_type scalar_type;
typedef typename GridTypeMapper<vtype>::vector_type vector_type;
typedef typename GridTypeMapper<vtype>::vector_typeD vector_typeD;
typedef typename GridTypeMapper<vtype>::tensor_reduced tensor_reduced_v;
typedef typename GridTypeMapper<vtype>::scalar_object recurse_scalar_object;
// substitutes a real or complex version with same tensor structure
typedef iMatrix<typename GridTypeMapper<vtype>::Complexified, N> Complexified;
typedef iMatrix<typename GridTypeMapper<vtype>::Realified, N> Realified;
// get double precision version
typedef iMatrix<typename GridTypeMapper<vtype>::DoublePrecision, N> DoublePrecision;
// Tensor removal
typedef iScalar<tensor_reduced_v> tensor_reduced;
typedef iMatrix<recurse_scalar_object, N> scalar_object;
enum { TensorLevel = GridTypeMapper<vtype>::TensorLevel + 1 };
iMatrix(const Zero &z) { *this = zero; };
iMatrix() = default;
iMatrix &operator=(const iMatrix &rhs) {
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++) vstream(_internal[i][j], rhs._internal[i][j]);
return *this;
};
iMatrix(scalar_type s) {
(*this) = s;
}; // recurse down and hit the constructor for vector_type
/*
iMatrix(const iMatrix<vtype,N> &copyme)=default;
iMatrix(iMatrix<vtype,N> &&copyme)=default;
iMatrix<vtype,N> & operator= (const iMatrix<vtype,N> &copyme) = default;
iMatrix<vtype,N> & operator= (iMatrix<vtype,N> &&copyme) = default;
*/
iMatrix<vtype, N> &operator=(const Zero &hero) {
zeroit(*this);
return *this;
}
template <class T, typename std::enable_if<!isGridTensor<T>::value, T>::type
* = nullptr>
strong_inline auto operator=(T arg) -> iMatrix<vtype, N> {
zeroit(*this);
for (int i = 0; i < N; i++) _internal[i][i] = arg;
return *this;
}
friend strong_inline void zeroit(iMatrix<vtype,N> &that){
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
zeroit(that._internal[i][j]);
}}
}
friend strong_inline void prefetch(iMatrix<vtype,N> &that){
for(int i=0;i<N;i++)
for(int j=0;j<N;j++)
prefetch(that._internal[i][j]);
}
friend strong_inline void vstream(iMatrix<vtype,N> &out,const iMatrix<vtype,N> &in){
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
vstream(out._internal[i][j],in._internal[i][j]);
}}
}
friend strong_inline void vbroadcast(iMatrix<vtype,N> &out,const iMatrix<vtype,N> &in,int lane){
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
vbroadcast(out._internal[i][j],in._internal[i][j],lane);
}}
}
friend strong_inline void permute(iMatrix<vtype,N> &out,const iMatrix<vtype,N> &in,int permutetype){
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
permute(out._internal[i][j],in._internal[i][j],permutetype);
}}
}
friend strong_inline void rotate(iMatrix<vtype,N> &out,const iMatrix<vtype,N> &in,int rot){
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
rotate(out._internal[i][j],in._internal[i][j],rot);
}}
}
friend strong_inline void exchange(iMatrix<vtype,N> &out1,iMatrix<vtype,N> &out2,
const iMatrix<vtype,N> &in1,const iMatrix<vtype,N> &in2,int type){
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
exchange(out1._internal[i][j],out2._internal[i][j],
in1._internal[i][j], in2._internal[i][j],type);
}}
}
// Unary negation
friend strong_inline iMatrix<vtype, N> operator-(const iMatrix<vtype, N> &r) {
iMatrix<vtype, N> ret;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
ret._internal[i][j] = -r._internal[i][j];
}
}
return ret;
}
// *=,+=,-= operators inherit from corresponding "*,-,+" behaviour
template <class T>
strong_inline iMatrix<vtype, N> &operator*=(const T &r) {
*this = (*this) * r;
return *this;
}
template <class T>
strong_inline iMatrix<vtype, N> &operator-=(const T &r) {
*this = (*this) - r;
return *this;
}
template <class T>
strong_inline iMatrix<vtype, N> &operator+=(const T &r) {
*this = (*this) + r;
return *this;
}
// returns an lvalue reference
strong_inline vtype &operator()(int i, int j) { return _internal[i][j]; }
strong_inline const vtype &operator()(int i, int j) const {
return _internal[i][j];
}
friend std::ostream &operator<<(std::ostream &stream,
const iMatrix<vtype, N> &o) {
stream << "M<" << N << ">{";
for (int i = 0; i < N; i++) {
stream << "{";
for (int j = 0; j < N; j++) {
stream << o._internal[i][j];
if (i < N - 1) stream << ",";
}
stream << "}";
if (i != N - 1) stream << "\n\t\t";
}
stream << "}";
return stream;
};
// strong_inline vtype && operator ()(int i,int j) {
// return _internal[i][j];
// }
};
template <class v>
void vprefetch(const iScalar<v> &vv) {
vprefetch(vv._internal);
}
template <class v, int N>
void vprefetch(const iVector<v, N> &vv) {
for (int i = 0; i < N; i++) {
vprefetch(vv._internal[i]);
}
}
template <class v, int N>
void vprefetch(const iMatrix<v, N> &vv) {
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
vprefetch(vv._internal[i][j]);
}
}
}
}
#endif