mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-16 02:35:36 +00:00
138 lines
5.5 KiB
C++
138 lines
5.5 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: ./lib/tensors/Tensor_inner.h
|
|
|
|
Copyright (C) 2015
|
|
|
|
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
|
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
#ifndef GRID_MATH_INNER_H
|
|
#define GRID_MATH_INNER_H
|
|
namespace Grid {
|
|
///////////////////////////////////////////////////////////////////////////////////////
|
|
// innerProduct Scalar x Scalar -> Scalar
|
|
// innerProduct Vector x Vector -> Scalar
|
|
// innerProduct Matrix x Matrix -> Scalar
|
|
///////////////////////////////////////////////////////////////////////////////////////
|
|
template<class sobj> inline RealD norm2(const sobj &arg){
|
|
auto nrm = innerProductD(arg,arg);
|
|
RealD ret = real(nrm);
|
|
return ret;
|
|
}
|
|
//////////////////////////////////////
|
|
// If single promote to double and sum 2x
|
|
//////////////////////////////////////
|
|
|
|
inline ComplexD innerProductD(const ComplexF &l,const ComplexF &r){ return innerProduct(l,r); }
|
|
inline ComplexD innerProductD(const ComplexD &l,const ComplexD &r){ return innerProduct(l,r); }
|
|
inline RealD innerProductD(const RealD &l,const RealD &r){ return innerProduct(l,r); }
|
|
inline RealD innerProductD(const RealF &l,const RealF &r){ return innerProduct(l,r); }
|
|
|
|
inline vComplexD innerProductD(const vComplexD &l,const vComplexD &r){ return innerProduct(l,r); }
|
|
inline vRealD innerProductD(const vRealD &l,const vRealD &r){ return innerProduct(l,r); }
|
|
inline vComplexD innerProductD(const vComplexF &l,const vComplexF &r){
|
|
vComplexD la,lb;
|
|
vComplexD ra,rb;
|
|
Optimization::PrecisionChange::StoD(l.v,la.v,lb.v);
|
|
Optimization::PrecisionChange::StoD(r.v,ra.v,rb.v);
|
|
return innerProduct(la,ra) + innerProduct(lb,rb);
|
|
}
|
|
inline vRealD innerProductD(const vRealF &l,const vRealF &r){
|
|
vRealD la,lb;
|
|
vRealD ra,rb;
|
|
Optimization::PrecisionChange::StoD(l.v,la.v,lb.v);
|
|
Optimization::PrecisionChange::StoD(r.v,ra.v,rb.v);
|
|
return innerProduct(la,ra) + innerProduct(lb,rb);
|
|
}
|
|
|
|
template<class l,class r,int N> inline
|
|
auto innerProductD (const iVector<l,N>& lhs,const iVector<r,N>& rhs) -> iScalar<decltype(innerProductD(lhs._internal[0],rhs._internal[0]))>
|
|
{
|
|
typedef decltype(innerProductD(lhs._internal[0],rhs._internal[0])) ret_t;
|
|
iScalar<ret_t> ret;
|
|
ret=zero;
|
|
for(int c1=0;c1<N;c1++){
|
|
ret._internal += innerProductD(lhs._internal[c1],rhs._internal[c1]);
|
|
}
|
|
return ret;
|
|
}
|
|
template<class l,class r,int N> inline
|
|
auto innerProductD (const iMatrix<l,N>& lhs,const iMatrix<r,N>& rhs) -> iScalar<decltype(innerProductD(lhs._internal[0][0],rhs._internal[0][0]))>
|
|
{
|
|
typedef decltype(innerProductD(lhs._internal[0][0],rhs._internal[0][0])) ret_t;
|
|
iScalar<ret_t> ret;
|
|
iScalar<ret_t> tmp;
|
|
ret=zero;
|
|
for(int c1=0;c1<N;c1++){
|
|
for(int c2=0;c2<N;c2++){
|
|
ret._internal+=innerProductD(lhs._internal[c1][c2],rhs._internal[c1][c2]);
|
|
}}
|
|
return ret;
|
|
}
|
|
template<class l,class r> inline
|
|
auto innerProductD (const iScalar<l>& lhs,const iScalar<r>& rhs) -> iScalar<decltype(innerProductD(lhs._internal,rhs._internal))>
|
|
{
|
|
typedef decltype(innerProductD(lhs._internal,rhs._internal)) ret_t;
|
|
iScalar<ret_t> ret;
|
|
ret._internal = innerProductD(lhs._internal,rhs._internal);
|
|
return ret;
|
|
}
|
|
//////////////////////
|
|
// Keep same precison
|
|
//////////////////////
|
|
template<class l,class r,int N> inline
|
|
auto innerProduct (const iVector<l,N>& lhs,const iVector<r,N>& rhs) -> iScalar<decltype(innerProduct(lhs._internal[0],rhs._internal[0]))>
|
|
{
|
|
typedef decltype(innerProduct(lhs._internal[0],rhs._internal[0])) ret_t;
|
|
iScalar<ret_t> ret;
|
|
ret=zero;
|
|
for(int c1=0;c1<N;c1++){
|
|
ret._internal += innerProduct(lhs._internal[c1],rhs._internal[c1]);
|
|
}
|
|
return ret;
|
|
}
|
|
template<class l,class r,int N> inline
|
|
auto innerProduct (const iMatrix<l,N>& lhs,const iMatrix<r,N>& rhs) -> iScalar<decltype(innerProduct(lhs._internal[0][0],rhs._internal[0][0]))>
|
|
{
|
|
typedef decltype(innerProduct(lhs._internal[0][0],rhs._internal[0][0])) ret_t;
|
|
iScalar<ret_t> ret;
|
|
iScalar<ret_t> tmp;
|
|
ret=zero;
|
|
for(int c1=0;c1<N;c1++){
|
|
for(int c2=0;c2<N;c2++){
|
|
ret._internal+=innerProduct(lhs._internal[c1][c2],rhs._internal[c1][c2]);
|
|
}}
|
|
return ret;
|
|
}
|
|
template<class l,class r> inline
|
|
auto innerProduct (const iScalar<l>& lhs,const iScalar<r>& rhs) -> iScalar<decltype(innerProduct(lhs._internal,rhs._internal))>
|
|
{
|
|
typedef decltype(innerProduct(lhs._internal,rhs._internal)) ret_t;
|
|
iScalar<ret_t> ret;
|
|
ret._internal = innerProduct(lhs._internal,rhs._internal);
|
|
return ret;
|
|
}
|
|
|
|
}
|
|
#endif
|