1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-14 09:45:36 +00:00
Grid/tests/debug/Test_general_coarse_hdcg.cc
2023-10-20 19:27:13 -04:00

427 lines
15 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_general_coarse_hdcg.cc
Copyright (C) 2023
Author: Peter Boyle <pboyle@bnl.gov>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
#include <Grid/lattice/PaddedCell.h>
#include <Grid/stencil/GeneralLocalStencil.h>
//#include <Grid/algorithms/GeneralCoarsenedMatrix.h>
#include <Grid/algorithms/iterative/AdefGeneric.h>
using namespace std;
using namespace Grid;
template<class Coarsened>
void SaveOperator(Coarsened &Operator,std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacWriter WR(Operator.Grid()->IsBoss());
assert(Operator._A.size()==Operator.geom.npoint);
WR.open(file);
for(int p=0;p<Operator._A.size();p++){
auto tmp = Operator.Cell.Extract(Operator._A[p]);
WR.writeScidacFieldRecord(tmp,record);
}
WR.close();
#endif
}
template<class Coarsened>
void LoadOperator(Coarsened &Operator,std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
Grid::ScidacReader RD ;
RD.open(file);
assert(Operator._A.size()==Operator.geom.npoint);
for(int p=0;p<Operator.geom.npoint;p++){
conformable(Operator._A[p].Grid(),Operator.CoarseGrid());
RD.readScidacFieldRecord(Operator._A[p],record);
}
RD.close();
Operator.ExchangeCoarseLinks();
#endif
}
template<class aggregation>
void SaveBasis(aggregation &Agg,std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacWriter WR(Agg.FineGrid->IsBoss());
WR.open(file);
for(int b=0;b<Agg.subspace.size();b++){
WR.writeScidacFieldRecord(Agg.subspace[b],record);
}
WR.close();
#endif
}
template<class aggregation>
void LoadBasis(aggregation &Agg, std::string file)
{
#ifdef HAVE_LIME
emptyUserRecord record;
ScidacReader RD ;
RD.open(file);
for(int b=0;b<Agg.subspace.size();b++){
RD.readScidacFieldRecord(Agg.subspace[b],record);
}
RD.close();
#endif
}
template<class Field> class TestSolver : public LinearFunction<Field> {
public:
TestSolver() {};
void operator() (const Field &in, Field &out){ out = Zero(); }
};
RealD InverseApproximation(RealD x){
return 1.0/x;
}
// Want Op in CoarsenOp to call MatPcDagMatPc
template<class Field>
class HermOpAdaptor : public LinearOperatorBase<Field>
{
LinearOperatorBase<Field> & wrapped;
public:
HermOpAdaptor(LinearOperatorBase<Field> &wrapme) : wrapped(wrapme) {};
void Op (const Field &in, Field &out) { wrapped.HermOp(in,out); }
void HermOp(const Field &in, Field &out) { wrapped.HermOp(in,out); }
void AdjOp (const Field &in, Field &out){ wrapped.HermOp(in,out); }
void OpDiag (const Field &in, Field &out) { assert(0); }
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); }
void OpDirAll (const Field &in, std::vector<Field> &out) { assert(0); };
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){ assert(0); }
};
template<class Field,class Matrix> class ChebyshevSmoother : public LinearFunction<Field>
{
public:
using LinearFunction<Field>::operator();
typedef LinearOperatorBase<Field> FineOperator;
FineOperator & _SmootherOperator;
Chebyshev<Field> Cheby;
ChebyshevSmoother(RealD _lo,RealD _hi,int _ord, FineOperator &SmootherOperator) :
_SmootherOperator(SmootherOperator),
Cheby(_lo,_hi,_ord,InverseApproximation)
{
std::cout << GridLogMessage<<" Chebyshev smoother order "<<_ord<<" ["<<_lo<<","<<_hi<<"]"<<std::endl;
};
void operator() (const Field &in, Field &out)
{
Field tmp(in.Grid());
tmp = in;
Cheby(_SmootherOperator,tmp,out);
}
};
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
const int Ls=16;
const int nbasis = 40;
const int cb = 0 ;
RealD mass=0.01;
RealD M5=1.8;
RealD b=1.5;
RealD c=0.5;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(),
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
// Construct a coarsened grid with 4^4 cell
Coordinate clatt = GridDefaultLatt();
for(int d=0;d<clatt.size();d++){
clatt[d] = clatt[d]/4;
}
GridCartesian *Coarse4d = SpaceTimeGrid::makeFourDimGrid(clatt,
GridDefaultSimd(Nd,vComplex::Nsimd()),
GridDefaultMpi());;
GridCartesian *Coarse5d = SpaceTimeGrid::makeFiveDimGrid(1,Coarse4d);
///////////////////////// RNGs /////////////////////////////////
std::vector<int> seeds4({1,2,3,4});
std::vector<int> seeds5({5,6,7,8});
std::vector<int> cseeds({5,6,7,8});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(seeds5);
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(seeds4);
GridParallelRNG CRNG(Coarse5d);CRNG.SeedFixedIntegers(cseeds);
///////////////////////// Configuration /////////////////////////////////
LatticeGaugeField Umu(UGrid);
FieldMetaData header;
std::string file("ckpoint_lat.4000");
NerscIO::readConfiguration(Umu,header,file);
//////////////////////// Fermion action //////////////////////////////////
MobiusFermionD Ddwf(Umu,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,b,c);
SchurDiagMooeeOperator<MobiusFermionD, LatticeFermion> HermOpEO(Ddwf);
typedef HermOpAdaptor<LatticeFermionD> HermFineMatrix;
HermFineMatrix FineHermOp(HermOpEO);
LatticeFermion result(FrbGrid); result=Zero();
LatticeFermion src(FrbGrid); random(RNG5,src);
// Run power method on FineHermOp
PowerMethod<LatticeFermion> PM; PM(HermOpEO,src);
////////////////////////////////////////////////////////////
///////////// Coarse basis and Little Dirac Operator ///////
////////////////////////////////////////////////////////////
typedef GeneralCoarsenedMatrix<vSpinColourVector,vTComplex,nbasis> LittleDiracOperator;
typedef LittleDiracOperator::CoarseVector CoarseVector;
NextToNextToNextToNearestStencilGeometry5D geom(Coarse5d);
NearestStencilGeometry5D geom_nn(Coarse5d);
// Warning: This routine calls PVdagM.Op, not PVdagM.HermOp
typedef Aggregation<vSpinColourVector,vTComplex,nbasis> Subspace;
Subspace Aggregates(Coarse5d,FrbGrid,cb);
////////////////////////////////////////////////////////////
// Need to check about red-black grid coarsening
////////////////////////////////////////////////////////////
LittleDiracOperator LittleDiracOp(geom,FrbGrid,Coarse5d);
bool load=true;
if ( load ) {
LoadBasis(Aggregates,"Subspace.scidac");
LoadOperator(LittleDiracOp,"LittleDiracOp.scidac");
} else {
Aggregates.CreateSubspaceChebyshev(RNG5,HermOpEO,nbasis,
95.0,0.1,
// 400,200,200 -- 48 iters
// 600,200,200 -- 38 iters, 162s
// 600,200,100 -- 38 iters, 169s
// 600,200,50 -- 88 iters. 370s
800,
200,
100,
0.0);
LittleDiracOp.CoarsenOperator(FineHermOp,Aggregates);
SaveBasis(Aggregates,"Subspace.scidac");
SaveOperator(LittleDiracOp,"LittleDiracOp.scidac");
}
// Try projecting to one hop only
LittleDiracOperator LittleDiracOpProj(geom_nn,FrbGrid,Coarse5d);
LittleDiracOpProj.ProjectNearestNeighbour(0.01,LittleDiracOp); // smaller shift 0.02? n
typedef HermitianLinearOperator<LittleDiracOperator,CoarseVector> HermMatrix;
HermMatrix CoarseOp (LittleDiracOp);
HermMatrix CoarseOpProj (LittleDiracOpProj);
//////////////////////////////////////////
// Build a coarse lanczos
//////////////////////////////////////////
Chebyshev<CoarseVector> IRLCheby(0.2,40.0,71); // 1 iter
FunctionHermOp<CoarseVector> IRLOpCheby(IRLCheby,CoarseOp);
PlainHermOp<CoarseVector> IRLOp (CoarseOp);
int Nk=48;
int Nm=64;
int Nstop=Nk;
ImplicitlyRestartedLanczos<CoarseVector> IRL(IRLOpCheby,IRLOp,Nstop,Nk,Nm,1.0e-5,20);
int Nconv;
std::vector<RealD> eval(Nm);
std::vector<CoarseVector> evec(Nm,Coarse5d);
CoarseVector c_src(Coarse5d);
//c_src=1.0;
random(CRNG,c_src);
CoarseVector c_res(Coarse5d);
CoarseVector c_ref(Coarse5d);
PowerMethod<CoarseVector> cPM; cPM(CoarseOp,c_src);
IRL.calc(eval,evec,c_src,Nconv);
DeflatedGuesser<CoarseVector> DeflCoarseGuesser(evec,eval);
//////////////////////////////////////////
// Build a coarse space solver
//////////////////////////////////////////
int maxit=20000;
ConjugateGradient<CoarseVector> CG(1.0e-8,maxit,false);
ConjugateGradient<LatticeFermionD> CGfine(1.0e-8,10000,false);
ZeroGuesser<CoarseVector> CoarseZeroGuesser;
// HPDSolver<CoarseVector> HPDSolve(CoarseOp,CG,CoarseZeroGuesser);
HPDSolver<CoarseVector> HPDSolve(CoarseOp,CG,DeflCoarseGuesser);
c_res=Zero();
HPDSolve(c_src,c_res); c_ref = c_res;
std::cout << GridLogMessage<<"src norm "<<norm2(c_src)<<std::endl;
std::cout << GridLogMessage<<"ref norm "<<norm2(c_ref)<<std::endl;
//////////////////////////////////////////////////////////////////////////
// Deflated (with real op EV's) solve for the projected coarse op
// Work towards ADEF1 in the coarse space
//////////////////////////////////////////////////////////////////////////
HPDSolver<CoarseVector> HPDSolveProj(CoarseOpProj,CG,DeflCoarseGuesser);
c_res=Zero();
HPDSolveProj(c_src,c_res);
std::cout << GridLogMessage<<"src norm "<<norm2(c_src)<<std::endl;
std::cout << GridLogMessage<<"res norm "<<norm2(c_res)<<std::endl;
c_res = c_res - c_ref;
std::cout << "Projected solver error "<<norm2(c_res)<<std::endl;
//////////////////////////////////////////////////////////////////////
// Coarse ADEF1 with deflation space
//////////////////////////////////////////////////////////////////////
ChebyshevSmoother<CoarseVector,HermMatrix >
CoarseSmoother(1.0,37.,8,CoarseOpProj); // just go to sloppy 0.1 convergence
// CoarseSmoother(0.1,37.,8,CoarseOpProj); //
// CoarseSmoother(0.5,37.,6,CoarseOpProj); // 8 iter 0.36s
// CoarseSmoother(0.5,37.,12,CoarseOpProj); // 8 iter, 0.55s
// CoarseSmoother(0.5,37.,8,CoarseOpProj);// 7-9 iter
// CoarseSmoother(1.0,37.,8,CoarseOpProj); // 0.4 - 0.5s solve to 0.04, 7-9 iter
// ChebyshevSmoother<CoarseVector,HermMatrix > CoarseSmoother(0.5,36.,10,CoarseOpProj); // 311
////////////////////////////////////////////////////////
// CG, Cheby mode spacing 200,200
// Unprojected Coarse CG solve to 1e-8 : 190 iters, 4.9s
// Unprojected Coarse CG solve to 4e-2 : 33 iters, 0.8s
// Projected Coarse CG solve to 1e-8 : 100 iters, 0.36s
////////////////////////////////////////////////////////
// CoarseSmoother(1.0,48.,8,CoarseOpProj); 48 evecs
////////////////////////////////////////////////////////
// ADEF1 Coarse solve to 1e-8 : 44 iters, 2.34s 2.1x gain
// ADEF1 Coarse solve to 4e-2 : 7 iters, 0.4s
// HDCG 38 iters 162s
//
// CoarseSmoother(1.0,40.,8,CoarseOpProj); 48 evecs
// ADEF1 Coarse solve to 1e-8 : 37 iters, 2.0s 2.1x gain
// ADEF1 Coarse solve to 4e-2 : 6 iters, 0.36s
// HDCG 38 iters 169s
TwoLevelADEF1defl<CoarseVector>
cADEF1(1.0e-8, 500,
CoarseOp,
CoarseSmoother,
evec,eval);
c_res=Zero();
cADEF1(c_src,c_res);
std::cout << GridLogMessage<<"src norm "<<norm2(c_src)<<std::endl;
std::cout << GridLogMessage<<"cADEF1 res norm "<<norm2(c_res)<<std::endl;
c_res = c_res - c_ref;
std::cout << "cADEF1 solver error "<<norm2(c_res)<<std::endl;
// cADEF1.Tolerance = 4.0e-2;
// cADEF1.Tolerance = 1.0e-1;
cADEF1.Tolerance = 5.0e-2;
c_res=Zero();
cADEF1(c_src,c_res);
std::cout << GridLogMessage<<"src norm "<<norm2(c_src)<<std::endl;
std::cout << GridLogMessage<<"cADEF1 res norm "<<norm2(c_res)<<std::endl;
c_res = c_res - c_ref;
std::cout << "cADEF1 solver error "<<norm2(c_res)<<std::endl;
//////////////////////////////////////////
// Build a smoother
//////////////////////////////////////////
// ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(10.0,100.0,10,FineHermOp); //499
// ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(3.0,100.0,10,FineHermOp); //383
// ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(1.0,100.0,10,FineHermOp); //328
// std::vector<RealD> los({0.5,1.0,3.0}); // 147/142/146 nbasis 1
// std::vector<RealD> los({1.0,2.0}); // Nbasis 24: 88,86 iterations
// std::vector<RealD> los({2.0,4.0}); // Nbasis 32 == 52, iters
// std::vector<RealD> los({2.0,4.0}); // Nbasis 40 == 36,36 iters
//
// Turns approx 2700 iterations into 340 fine multiplies with Nbasis 40
// Need to measure cost of coarse space.
//
// -- i) Reduce coarse residual -- 0.04
// -- ii) Lanczos on coarse space -- done
// -- iii) Possible 1 hop project and/or preconditioning it - easy - PrecCG it and
// use a limited stencil. Reread BFM code to check on evecs / deflation strategy with prec
//
std::vector<RealD> los({3.0}); // Nbasis 40 == 36,36 iters
// std::vector<int> ords({7,8,10}); // Nbasis 40 == 40,38,36 iters (320,342,396 mults)
std::vector<int> ords({7}); // Nbasis 40 == 40 iters (320 mults)
for(int l=0;l<los.size();l++){
RealD lo = los[l];
for(int o=0;o<ords.size();o++){
ConjugateGradient<CoarseVector> CGsloppy(4.0e-2,maxit,false);
HPDSolver<CoarseVector> HPDSolveSloppy(CoarseOp,CGsloppy,DeflCoarseGuesser);
// ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(lo,92,10,FineHermOp); // 36 best case
ChebyshevSmoother<LatticeFermionD,HermFineMatrix > Smoother(lo,92,ords[o],FineHermOp); // 311
//////////////////////////////////////////
// Build a HDCG solver
//////////////////////////////////////////
TwoLevelADEF2<LatticeFermion,CoarseVector,Subspace>
HDCG(1.0e-8, 100,
FineHermOp,
Smoother,
HPDSolveSloppy,
HPDSolve,
Aggregates);
TwoLevelADEF2<LatticeFermion,CoarseVector,Subspace>
HDCGdefl(1.0e-8, 100,
FineHermOp,
Smoother,
cADEF1,
HPDSolve,
Aggregates);
result=Zero();
HDCGdefl(src,result);
result=Zero();
HDCG(src,result);
}
}
// Standard CG
result=Zero();
CGfine(HermOpEO, src, result);
Grid_finalize();
return 0;
}