1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-14 01:35:36 +00:00
Grid/lib/parallelIO/NerscIO.h
2018-04-17 10:48:33 +01:00

364 lines
12 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/parallelIO/NerscIO.h
Copyright (C) 2015
Author: Matt Spraggs <matthew.spraggs@gmail.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_NERSC_IO_H
#define GRID_NERSC_IO_H
namespace Grid {
namespace QCD {
using namespace Grid;
////////////////////////////////////////////////////////////////////////////////
// Write and read from fstream; comput header offset for payload
////////////////////////////////////////////////////////////////////////////////
class NerscIO : public BinaryIO {
public:
static inline void truncate(std::string file){
std::ofstream fout(file,std::ios::out);
}
static inline unsigned int writeHeader(FieldMetaData &field,std::string file)
{
std::ofstream fout(file,std::ios::out|std::ios::in);
fout.seekp(0,std::ios::beg);
dump_meta_data(field, fout);
field.data_start = fout.tellp();
return field.data_start;
}
// for the header-reader
static inline int readHeader(std::string file,GridBase *grid, FieldMetaData &field)
{
uint64_t offset=0;
std::map<std::string,std::string> header;
std::string line;
//////////////////////////////////////////////////
// read the header
//////////////////////////////////////////////////
std::ifstream fin(file);
getline(fin,line); // read one line and insist is
removeWhitespace(line);
std::cout << GridLogMessage << "* " << line << std::endl;
assert(line==std::string("BEGIN_HEADER"));
do {
getline(fin,line); // read one line
std::cout << GridLogMessage << "* "<<line<< std::endl;
int eq = line.find("=");
if(eq >0) {
std::string key=line.substr(0,eq);
std::string val=line.substr(eq+1);
removeWhitespace(key);
removeWhitespace(val);
header[key] = val;
}
} while( line.find("END_HEADER") == std::string::npos );
field.data_start = fin.tellg();
//////////////////////////////////////////////////
// chomp the values
//////////////////////////////////////////////////
field.hdr_version = header["HDR_VERSION"];
field.data_type = header["DATATYPE"];
field.storage_format = header["STORAGE_FORMAT"];
field.dimension[0] = std::stol(header["DIMENSION_1"]);
field.dimension[1] = std::stol(header["DIMENSION_2"]);
field.dimension[2] = std::stol(header["DIMENSION_3"]);
field.dimension[3] = std::stol(header["DIMENSION_4"]);
assert(grid->_ndimension == 4);
for(int d=0;d<4;d++){
assert(grid->_fdimensions[d]==field.dimension[d]);
}
field.link_trace = std::stod(header["LINK_TRACE"]);
field.plaquette = std::stod(header["PLAQUETTE"]);
field.boundary[0] = header["BOUNDARY_1"];
field.boundary[1] = header["BOUNDARY_2"];
field.boundary[2] = header["BOUNDARY_3"];
field.boundary[3] = header["BOUNDARY_4"];
field.checksum = std::stoul(header["CHECKSUM"],0,16);
field.ensemble_id = header["ENSEMBLE_ID"];
field.ensemble_label = header["ENSEMBLE_LABEL"];
field.sequence_number = std::stol(header["SEQUENCE_NUMBER"]);
field.creator = header["CREATOR"];
field.creator_hardware = header["CREATOR_HARDWARE"];
field.creation_date = header["CREATION_DATE"];
field.archive_date = header["ARCHIVE_DATE"];
field.floating_point = header["FLOATING_POINT"];
return field.data_start;
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Now the meat: the object readers
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<class vsimd>
static inline void readConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,
FieldMetaData& header,
std::string file)
{
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
GridBase *grid = Umu._grid;
uint64_t offset = readHeader(file,Umu._grid,header);
FieldMetaData clone(header);
std::string format(header.floating_point);
int ieee32big = (format == std::string("IEEE32BIG"));
int ieee32 = (format == std::string("IEEE32"));
int ieee64big = (format == std::string("IEEE64BIG"));
int ieee64 = (format == std::string("IEEE64"));
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
// depending on datatype, set up munger;
// munger is a function of <floating point, Real, data_type>
if ( header.data_type == std::string("4D_SU3_GAUGE") ) {
if ( ieee32 || ieee32big ) {
BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>, LorentzColour2x3F>
(Umu,file,Gauge3x2munger<LorentzColour2x3F,LorentzColourMatrix>(), offset,format,
nersc_csum,scidac_csuma,scidac_csumb);
}
if ( ieee64 || ieee64big ) {
BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>, LorentzColour2x3D>
(Umu,file,Gauge3x2munger<LorentzColour2x3D,LorentzColourMatrix>(),offset,format,
nersc_csum,scidac_csuma,scidac_csumb);
}
} else if ( header.data_type == std::string("4D_SU3_GAUGE_3x3") ) {
if ( ieee32 || ieee32big ) {
BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>,LorentzColourMatrixF>
(Umu,file,GaugeSimpleMunger<LorentzColourMatrixF,LorentzColourMatrix>(),offset,format,
nersc_csum,scidac_csuma,scidac_csumb);
}
if ( ieee64 || ieee64big ) {
BinaryIO::readLatticeObject<iLorentzColourMatrix<vsimd>,LorentzColourMatrixD>
(Umu,file,GaugeSimpleMunger<LorentzColourMatrixD,LorentzColourMatrix>(),offset,format,
nersc_csum,scidac_csuma,scidac_csumb);
}
} else {
assert(0);
}
GaugeStatistics(Umu,clone);
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<<" checksum "<<std::hex<<nersc_csum<< std::dec
<<" header "<<std::hex<<header.checksum<<std::dec <<std::endl;
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<<" plaquette "<<clone.plaquette
<<" header "<<header.plaquette<<std::endl;
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<<" link_trace "<<clone.link_trace
<<" header "<<header.link_trace<<std::endl;
if ( fabs(clone.plaquette -header.plaquette ) >= 1.0e-5 ) {
std::cout << " Plaquette mismatch "<<std::endl;
std::cout << Umu[0]<<std::endl;
std::cout << Umu[1]<<std::endl;
}
if ( nersc_csum != header.checksum ) {
std::cerr << " checksum mismatch " << std::endl;
std::cerr << " plaqs " << clone.plaquette << " " << header.plaquette << std::endl;
std::cerr << " trace " << clone.link_trace<< " " << header.link_trace<< std::endl;
std::cerr << " nersc_csum " <<std::hex<< nersc_csum << " " << header.checksum<< std::dec<< std::endl;
exit(0);
}
assert(fabs(clone.plaquette -header.plaquette ) < 1.0e-5 );
assert(fabs(clone.link_trace-header.link_trace) < 1.0e-6 );
assert(nersc_csum == header.checksum );
std::cout<<GridLogMessage <<"NERSC Configuration "<<file<< " and plaquette, link trace, and checksum agree"<<std::endl;
}
template<class vsimd>
static inline void writeConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,
std::string file,
int two_row,
int bits32)
{
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
typedef iLorentzColourMatrix<vsimd> vobj;
typedef typename vobj::scalar_object sobj;
FieldMetaData header;
///////////////////////////////////////////
// Following should become arguments
///////////////////////////////////////////
header.sequence_number = 1;
header.ensemble_id = "UKQCD";
header.ensemble_label = "DWF";
typedef LorentzColourMatrixD fobj3D;
typedef LorentzColour2x3D fobj2D;
GridBase *grid = Umu._grid;
GridMetaData(grid,header);
assert(header.nd==4);
GaugeStatistics(Umu,header);
MachineCharacteristics(header);
uint64_t offset;
// Sod it -- always write 3x3 double
header.floating_point = std::string("IEEE64BIG");
header.data_type = std::string("4D_SU3_GAUGE_3x3");
GaugeSimpleUnmunger<fobj3D,sobj> munge;
if ( grid->IsBoss() ) {
truncate(file);
offset = writeHeader(header,file);
}
grid->Broadcast(0,(void *)&offset,sizeof(offset));
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
BinaryIO::writeLatticeObject<vobj,fobj3D>(Umu,file,munge,offset,header.floating_point,
nersc_csum,scidac_csuma,scidac_csumb);
header.checksum = nersc_csum;
if ( grid->IsBoss() ) {
writeHeader(header,file);
}
std::cout<<GridLogMessage <<"Written NERSC Configuration on "<< file << " checksum "
<<std::hex<<header.checksum
<<std::dec<<" plaq "<< header.plaquette <<std::endl;
}
///////////////////////////////
// RNG state
///////////////////////////////
static inline void writeRNGState(GridSerialRNG &serial,GridParallelRNG &parallel,std::string file)
{
typedef typename GridParallelRNG::RngStateType RngStateType;
// Following should become arguments
FieldMetaData header;
header.sequence_number = 1;
header.ensemble_id = "UKQCD";
header.ensemble_label = "DWF";
GridBase *grid = parallel._grid;
GridMetaData(grid,header);
assert(header.nd==4);
header.link_trace=0.0;
header.plaquette=0.0;
MachineCharacteristics(header);
uint64_t offset;
#ifdef RNG_RANLUX
header.floating_point = std::string("UINT64");
header.data_type = std::string("RANLUX48");
#endif
#ifdef RNG_MT19937
header.floating_point = std::string("UINT32");
header.data_type = std::string("MT19937");
#endif
#ifdef RNG_SITMO
header.floating_point = std::string("UINT64");
header.data_type = std::string("SITMO");
#endif
if ( grid->IsBoss() ) {
truncate(file);
offset = writeHeader(header,file);
}
grid->Broadcast(0,(void *)&offset,sizeof(offset));
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
BinaryIO::writeRNG(serial,parallel,file,offset,nersc_csum,scidac_csuma,scidac_csumb);
header.checksum = nersc_csum;
if ( grid->IsBoss() ) {
offset = writeHeader(header,file);
}
std::cout<<GridLogMessage
<<"Written NERSC RNG STATE "<<file<< " checksum "
<<std::hex<<header.checksum
<<std::dec<<std::endl;
}
static inline void readRNGState(GridSerialRNG &serial,GridParallelRNG & parallel,FieldMetaData& header,std::string file)
{
typedef typename GridParallelRNG::RngStateType RngStateType;
GridBase *grid = parallel._grid;
uint64_t offset = readHeader(file,grid,header);
FieldMetaData clone(header);
std::string format(header.floating_point);
std::string data_type(header.data_type);
#ifdef RNG_RANLUX
assert(format == std::string("UINT64"));
assert(data_type == std::string("RANLUX48"));
#endif
#ifdef RNG_MT19937
assert(format == std::string("UINT32"));
assert(data_type == std::string("MT19937"));
#endif
#ifdef RNG_SITMO
assert(format == std::string("UINT64"));
assert(data_type == std::string("SITMO"));
#endif
// depending on datatype, set up munger;
// munger is a function of <floating point, Real, data_type>
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
BinaryIO::readRNG(serial,parallel,file,offset,nersc_csum,scidac_csuma,scidac_csumb);
if ( nersc_csum != header.checksum ) {
std::cerr << "checksum mismatch "<<std::hex<< nersc_csum <<" "<<header.checksum<<std::dec<<std::endl;
exit(0);
}
assert(nersc_csum == header.checksum );
std::cout<<GridLogMessage <<"Read NERSC RNG file "<<file<< " format "<< data_type <<std::endl;
}
};
}}
#endif