1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 17:25:37 +01:00
Grid/lib/qcd/hmc/integrators/Integrator_base.h
neo 68fe0769a1 Added minimum norm integrator
Little rearrangement of HMC and integrator classes
2015-07-06 16:17:32 +09:00

281 lines
7.2 KiB
C++

//--------------------------------------------------------------------
/*! @file Integrator_base.h
* @brief Declaration of classes for the abstract Molecular Dynamics integrator
*
* @author Guido Cossu
*/
//--------------------------------------------------------------------
#ifndef INTEGRATOR_INCLUDED
#define INTEGRATOR_INCLUDED
#include <memory>
class Observer;
/*! @brief Abstract base class for Molecular Dynamics management */
namespace Grid{
namespace QCD{
typedef Action<LatticeLorentzColourMatrix>* ActPtr; // now force the same size as the rest of the code
typedef std::vector<ActPtr> ActionLevel;
typedef std::vector<ActionLevel> ActionSet;
typedef std::vector<Observer*> ObserverList;
struct IntegratorParameters{
int Nexp;
int MDsteps; // number of outer steps
RealD trajL; // trajectory length
RealD stepsize;
IntegratorParameters(int Nexp_,
int MDsteps_,
RealD trajL_):
Nexp(Nexp_),MDsteps(MDsteps_),trajL(trajL_),stepsize(trajL/MDsteps){};
};
namespace MDutils{
void generate_momenta(LatticeLorentzColourMatrix&,GridParallelRNG&);
void generate_momenta_su3(LatticeLorentzColourMatrix&,GridParallelRNG&);
}
template< class IntegratorPolicy >
class Integrator{
private:
IntegratorParameters Params;
const ActionSet as;
const std::vector<int> Nrel; //relative step size per level
std::unique_ptr<LatticeLorentzColourMatrix> P;
GridParallelRNG pRNG;
//ObserverList observers; // not yet
IntegratorPolicy TheIntegrator;
void register_observers();
void notify_observers();
void update_P(LatticeLorentzColourMatrix&U, int level,double ep){
for(int a=0; a<as[level].size(); ++a){
LatticeLorentzColourMatrix force(U._grid);
as[level].at(a)->deriv(U,force);
*P -= force*ep;
}
}
void update_U(LatticeLorentzColourMatrix&U, double ep){
//rewrite exponential to deal automatically with the lorentz index?
LatticeColourMatrix Umu(U._grid);
LatticeColourMatrix Pmu(U._grid);
for (int mu = 0; mu < Nd; mu++){
Umu=peekLorentz(U, mu);
Pmu=peekLorentz(*P, mu);
Umu = expMat(Pmu, ep, Params.Nexp)*Umu;
pokeLorentz(U, Umu, mu);
}
}
friend void IntegratorPolicy::step (LatticeLorentzColourMatrix& U,
int level, std::vector<int>& clock,
Integrator<IntegratorPolicy>* Integ);
public:
Integrator(GridBase* grid, IntegratorParameters Par,
ActionSet& Aset, std::vector<int> Nrel_):
Params(Par),as(Aset),Nrel(Nrel_),P(new LatticeLorentzColourMatrix(grid)),pRNG(grid){
assert(as.size() == Nrel.size());
pRNG.SeedRandomDevice();
};
~Integrator(){}
//Initialization of momenta and actions
void init(LatticeLorentzColourMatrix& U){
std::cout<< "Integrator init\n";
MDutils::generate_momenta(*P,pRNG);
for(int level=0; level< as.size(); ++level){
for(int actionID=0; actionID<as.at(level).size(); ++actionID){
as[level].at(actionID)->init(U, pRNG);
}
}
}
// Calculate action
RealD S(LatticeLorentzColourMatrix& U){
LatticeComplex Hloc(U._grid);
Hloc = zero;
// Momenta
for (int mu=0; mu <Nd; mu++){
LatticeColourMatrix Pmu = peekLorentz(*P, mu);
Hloc -= trace(Pmu*Pmu);
}
Complex Hsum = sum(Hloc);
RealD H = Hsum.real();
std::cout << "H_p = "<< H << "\n";
// Actions
for(int level=0; level<as.size(); ++level)
for(int actionID=0; actionID<as.at(level).size(); ++actionID)
H += as[level].at(actionID)->S(U);
return H;
}
void integrate(LatticeLorentzColourMatrix& U, int level){
std::vector<int> clock;
clock.resize(as.size(),0);
for(int step=0; step< Params.MDsteps; ++step) // MD step
TheIntegrator.step(U,0,clock, (this));
}
};
class MinimumNorm2{
const double lambda = 0.1931833275037836;
public:
void step (LatticeLorentzColourMatrix& U,
int level, std::vector<int>& clock,
Integrator<MinimumNorm2>* Integ){
// level : current level
// fl : final level
// eps : current step size
int fl = Integ->as.size() -1;
double eps = Integ->Params.stepsize;
for(int l=0; l<=level; ++l) eps/= 2.0*Integ->Nrel[l];
int fin = Integ->Nrel[0];
for(int l=1; l<=level; ++l) fin*= 2.0*Integ->Nrel[l];
fin = 3*Integ->Params.MDsteps*fin -1;
for(int e=0; e<Integ->Nrel[level]; ++e){
if(clock[level] == 0){ // initial half step
Integ->update_P(U,level,lambda*eps);
++clock[level];
for(int l=0; l<level;++l) std::cout<<" ";
std::cout<<"P "<< clock[level] <<std::endl;
}
if(level == fl){ // lowest level
Integ->update_U(U,0.5*eps);
for(int l=0; l<level;++l) std::cout<<" ";
std::cout<<"U "<< (clock[level]+1) <<std::endl;
}else{ // recursive function call
step(U,level+1,clock, Integ);
}
Integ->update_P(U,level,(1.0-2.0*lambda)*eps);
++clock[level];
for(int l=0; l<level;++l) std::cout<<" ";
std::cout<<"P "<< (clock[level]) <<std::endl;
if(level == fl){ // lowest level
Integ->update_U(U,0.5*eps);
for(int l=0; l<level;++l) std::cout<<" ";
std::cout<<"U "<< (clock[level]+1) <<std::endl;
}else{ // recursive function call
step(U,level+1,clock, Integ);
}
if(clock[level] == fin){ // final half step
Integ->update_P(U,level,lambda*eps);
++clock[level];
for(int l=0; l<level;++l) std::cout<<" ";
std::cout<<"P "<< clock[level] <<std::endl;
}else{ // bulk step
Integ->update_P(U,level,lambda*2.0*eps);
clock[level]+=2;
for(int l=0; l<level;++l) std::cout<<" ";
std::cout<<"P "<< clock[level] <<std::endl;
}
}
}
};
class LeapFrog{
public:
void step (LatticeLorentzColourMatrix& U,
int level, std::vector<int>& clock,
Integrator<LeapFrog>* Integ){
// fl : final level
// eps : current step size
int fl = Integ->as.size() -1;
double eps = Integ->Params.stepsize;
// Get current level step size
for(int l=0; l<=level; ++l) eps/= Integ->Nrel[l];
int fin = 1;
for(int l=0; l<=level; ++l) fin*= Integ->Nrel[l];
fin = 2*Integ->Params.MDsteps*fin - 1;
for(int e=0; e<Integ->Nrel[level]; ++e){
if(clock[level] == 0){ // initial half step
Integ->update_P(U, level,eps/2.0);
++clock[level];
for(int l=0; l<level;++l) std::cout<<" ";
std::cout<<"P "<< 0.5*clock[level] <<std::endl;
}
if(level == fl){ // lowest level
Integ->update_U(U, eps);
for(int l=0; l<level;++l) std::cout<<" ";
std::cout<<"U "<< 0.5*(clock[level]+1) <<std::endl;
}else{ // recursive function call
step(U, level+1,clock, Integ);
}
if(clock[level] == fin){ // final half step
Integ->update_P(U, level,eps/2.0);
++clock[level];
for(int l=0; l<level;++l) std::cout<<" ";
std::cout<<"P "<< 0.5*clock[level] <<std::endl;
}else{ // bulk step
Integ->update_P(U, level,eps);
clock[level]+=2;
for(int l=0; l<level;++l) std::cout<<" ";
std::cout<<"P "<< 0.5*clock[level] <<std::endl;
}
}
}
};
}
}
#endif//INTEGRATOR_INCLUDED