1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 15:55:37 +00:00
Grid/lib/tensors/Tensor_inner.h
2017-04-15 10:57:21 +01:00

138 lines
5.5 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/tensors/Tensor_inner.h
Copyright (C) 2015
Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_MATH_INNER_H
#define GRID_MATH_INNER_H
namespace Grid {
///////////////////////////////////////////////////////////////////////////////////////
// innerProduct Scalar x Scalar -> Scalar
// innerProduct Vector x Vector -> Scalar
// innerProduct Matrix x Matrix -> Scalar
///////////////////////////////////////////////////////////////////////////////////////
template<class sobj> inline RealD norm2(const sobj &arg){
auto nrm = innerProductD(arg,arg);
RealD ret = real(nrm);
return ret;
}
//////////////////////////////////////
// If single promote to double and sum 2x
//////////////////////////////////////
inline ComplexD innerProductD(const ComplexF &l,const ComplexF &r){ return innerProduct(l,r); }
inline ComplexD innerProductD(const ComplexD &l,const ComplexD &r){ return innerProduct(l,r); }
inline RealD innerProductD(const RealD &l,const RealD &r){ return innerProduct(l,r); }
inline RealD innerProductD(const RealF &l,const RealF &r){ return innerProduct(l,r); }
inline vComplexD innerProductD(const vComplexD &l,const vComplexD &r){ return innerProduct(l,r); }
inline vRealD innerProductD(const vRealD &l,const vRealD &r){ return innerProduct(l,r); }
inline vComplexD innerProductD(const vComplexF &l,const vComplexF &r){
vComplexD la,lb;
vComplexD ra,rb;
Optimization::PrecisionChange::StoD(l.v,la.v,lb.v);
Optimization::PrecisionChange::StoD(r.v,ra.v,rb.v);
return innerProduct(la,ra) + innerProduct(lb,rb);
}
inline vRealD innerProductD(const vRealF &l,const vRealF &r){
vRealD la,lb;
vRealD ra,rb;
Optimization::PrecisionChange::StoD(l.v,la.v,lb.v);
Optimization::PrecisionChange::StoD(r.v,ra.v,rb.v);
return innerProduct(la,ra) + innerProduct(lb,rb);
}
template<class l,class r,int N> inline
auto innerProductD (const iVector<l,N>& lhs,const iVector<r,N>& rhs) -> iScalar<decltype(innerProductD(lhs._internal[0],rhs._internal[0]))>
{
typedef decltype(innerProductD(lhs._internal[0],rhs._internal[0])) ret_t;
iScalar<ret_t> ret;
ret=zero;
for(int c1=0;c1<N;c1++){
ret._internal += innerProductD(lhs._internal[c1],rhs._internal[c1]);
}
return ret;
}
template<class l,class r,int N> inline
auto innerProductD (const iMatrix<l,N>& lhs,const iMatrix<r,N>& rhs) -> iScalar<decltype(innerProductD(lhs._internal[0][0],rhs._internal[0][0]))>
{
typedef decltype(innerProductD(lhs._internal[0][0],rhs._internal[0][0])) ret_t;
iScalar<ret_t> ret;
iScalar<ret_t> tmp;
ret=zero;
for(int c1=0;c1<N;c1++){
for(int c2=0;c2<N;c2++){
ret._internal+=innerProductD(lhs._internal[c1][c2],rhs._internal[c1][c2]);
}}
return ret;
}
template<class l,class r> inline
auto innerProductD (const iScalar<l>& lhs,const iScalar<r>& rhs) -> iScalar<decltype(innerProductD(lhs._internal,rhs._internal))>
{
typedef decltype(innerProductD(lhs._internal,rhs._internal)) ret_t;
iScalar<ret_t> ret;
ret._internal = innerProductD(lhs._internal,rhs._internal);
return ret;
}
//////////////////////
// Keep same precison
//////////////////////
template<class l,class r,int N> inline
auto innerProduct (const iVector<l,N>& lhs,const iVector<r,N>& rhs) -> iScalar<decltype(innerProduct(lhs._internal[0],rhs._internal[0]))>
{
typedef decltype(innerProduct(lhs._internal[0],rhs._internal[0])) ret_t;
iScalar<ret_t> ret;
ret=zero;
for(int c1=0;c1<N;c1++){
ret._internal += innerProduct(lhs._internal[c1],rhs._internal[c1]);
}
return ret;
}
template<class l,class r,int N> inline
auto innerProduct (const iMatrix<l,N>& lhs,const iMatrix<r,N>& rhs) -> iScalar<decltype(innerProduct(lhs._internal[0][0],rhs._internal[0][0]))>
{
typedef decltype(innerProduct(lhs._internal[0][0],rhs._internal[0][0])) ret_t;
iScalar<ret_t> ret;
iScalar<ret_t> tmp;
ret=zero;
for(int c1=0;c1<N;c1++){
for(int c2=0;c2<N;c2++){
ret._internal+=innerProduct(lhs._internal[c1][c2],rhs._internal[c1][c2]);
}}
return ret;
}
template<class l,class r> inline
auto innerProduct (const iScalar<l>& lhs,const iScalar<r>& rhs) -> iScalar<decltype(innerProduct(lhs._internal,rhs._internal))>
{
typedef decltype(innerProduct(lhs._internal,rhs._internal)) ret_t;
iScalar<ret_t> ret;
ret._internal = innerProduct(lhs._internal,rhs._internal);
return ret;
}
}
#endif