mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 07:55:35 +00:00
216 lines
4.8 KiB
C++
216 lines
4.8 KiB
C++
#ifndef HOUSEHOLDER_H
|
|
#define HOUSEHOLDER_H
|
|
|
|
#define TIMER(A) std::cout << GridLogMessage << __FUNC__ << " file "<< __FILE__ <<" line " << __LINE__ << std::endl;
|
|
#define ENTER() std::cout << GridLogMessage << "ENTRY "<<__FUNC__ << " file "<< __FILE__ <<" line " << __LINE__ << std::endl;
|
|
#define LEAVE() std::cout << GridLogMessage << "EXIT "<<__FUNC__ << " file "<< __FILE__ <<" line " << __LINE__ << std::endl;
|
|
|
|
#include <cstdlib>
|
|
#include <string>
|
|
#include <cmath>
|
|
#include <iostream>
|
|
#include <sstream>
|
|
#include <stdexcept>
|
|
#include <fstream>
|
|
#include <complex>
|
|
#include <algorithm>
|
|
|
|
namespace Grid {
|
|
/** Comparison function for finding the max element in a vector **/
|
|
template <class T> bool cf(T i, T j) {
|
|
return abs(i) < abs(j);
|
|
}
|
|
|
|
/**
|
|
Calculate a real Givens angle
|
|
**/
|
|
template <class T> inline void Givens_calc(T y, T z, T &c, T &s){
|
|
|
|
RealD mz = (RealD)abs(z);
|
|
|
|
if(mz==0.0){
|
|
c = 1; s = 0;
|
|
}
|
|
if(mz >= (RealD)abs(y)){
|
|
T t = -y/z;
|
|
s = (T)1.0 / sqrt ((T)1.0 + t * t);
|
|
c = s * t;
|
|
} else {
|
|
T t = -z/y;
|
|
c = (T)1.0 / sqrt ((T)1.0 + t * t);
|
|
s = c * t;
|
|
}
|
|
}
|
|
|
|
template <class T> inline void Givens_mult(DenseMatrix<T> &A, int i, int k, T c, T s, int dir)
|
|
{
|
|
int q ; SizeSquare(A,q);
|
|
|
|
if(dir == 0){
|
|
for(int j=0;j<q;j++){
|
|
T nu = A[i][j];
|
|
T w = A[k][j];
|
|
A[i][j] = (c*nu + s*w);
|
|
A[k][j] = (-s*nu + c*w);
|
|
}
|
|
}
|
|
|
|
if(dir == 1){
|
|
for(int j=0;j<q;j++){
|
|
T nu = A[j][i];
|
|
T w = A[j][k];
|
|
A[j][i] = (c*nu - s*w);
|
|
A[j][k] = (s*nu + c*w);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
from input = x;
|
|
Compute the complex Householder vector, v, such that
|
|
P = (I - b v transpose(v) )
|
|
b = 2/v.v
|
|
|
|
P | x | | x | k = 0
|
|
| x | | 0 |
|
|
| x | = | 0 |
|
|
| x | | 0 | j = 3
|
|
| x | | x |
|
|
|
|
These are the "Unreduced" Householder vectors.
|
|
|
|
**/
|
|
template <class T> inline void Householder_vector(DenseVector<T> input, int k, int j, DenseVector<T> &v, T &beta)
|
|
{
|
|
int N ; Size(input,N);
|
|
T m = *max_element(input.begin() + k, input.begin() + j + 1, cf<T> );
|
|
|
|
if(abs(m) > 0.0){
|
|
T alpha = 0;
|
|
|
|
for(int i=k; i<j+1; i++){
|
|
v[i] = input[i]/m;
|
|
alpha = alpha + v[i]*conj(v[i]);
|
|
}
|
|
alpha = sqrt(alpha);
|
|
beta = (T)1.0/(alpha*(alpha + abs(v[k]) ));
|
|
|
|
if(abs(v[k]) > 0.0) v[k] = v[k] + (v[k]/abs(v[k]))*alpha;
|
|
else v[k] = -alpha;
|
|
} else{
|
|
for(int i=k; i<j+1; i++){
|
|
v[i] = 0.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
from input = x;
|
|
Compute the complex Householder vector, v, such that
|
|
P = (I - b v transpose(v) )
|
|
b = 2/v.v
|
|
|
|
Px = alpha*e_dir
|
|
|
|
These are the "Unreduced" Householder vectors.
|
|
|
|
**/
|
|
|
|
template <class T> inline void Householder_vector(DenseVector<T> input, int k, int j, int dir, DenseVector<T> &v, T &beta)
|
|
{
|
|
int N = input.size();
|
|
T m = *max_element(input.begin() + k, input.begin() + j + 1, cf);
|
|
|
|
if(abs(m) > 0.0){
|
|
T alpha = 0;
|
|
|
|
for(int i=k; i<j+1; i++){
|
|
v[i] = input[i]/m;
|
|
alpha = alpha + v[i]*conj(v[i]);
|
|
}
|
|
|
|
alpha = sqrt(alpha);
|
|
beta = 1.0/(alpha*(alpha + abs(v[dir]) ));
|
|
|
|
if(abs(v[dir]) > 0.0) v[dir] = v[dir] + (v[dir]/abs(v[dir]))*alpha;
|
|
else v[dir] = -alpha;
|
|
}else{
|
|
for(int i=k; i<j+1; i++){
|
|
v[i] = 0.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
Compute the product PA if trans = 0
|
|
AP if trans = 1
|
|
P = (I - b v transpose(v) )
|
|
b = 2/v.v
|
|
start at element l of matrix A
|
|
v is of length j - k + 1 of v are nonzero
|
|
**/
|
|
|
|
template <class T> inline void Householder_mult(DenseMatrix<T> &A , DenseVector<T> v, T beta, int l, int k, int j, int trans)
|
|
{
|
|
int N ; SizeSquare(A,N);
|
|
|
|
if(abs(beta) > 0.0){
|
|
for(int p=l; p<N; p++){
|
|
T s = 0;
|
|
if(trans==0){
|
|
for(int i=k;i<j+1;i++) s += conj(v[i-k])*A[i][p];
|
|
s *= beta;
|
|
for(int i=k;i<j+1;i++){ A[i][p] = A[i][p]-s*conj(v[i-k]);}
|
|
} else {
|
|
for(int i=k;i<j+1;i++){ s += conj(v[i-k])*A[p][i];}
|
|
s *= beta;
|
|
for(int i=k;i<j+1;i++){ A[p][i]=A[p][i]-s*conj(v[i-k]);}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
Compute the product PA if trans = 0
|
|
AP if trans = 1
|
|
P = (I - b v transpose(v) )
|
|
b = 2/v.v
|
|
start at element l of matrix A
|
|
v is of length j - k + 1 of v are nonzero
|
|
A is tridiagonal
|
|
**/
|
|
template <class T> inline void Householder_mult_tri(DenseMatrix<T> &A , DenseVector<T> v, T beta, int l, int M, int k, int j, int trans)
|
|
{
|
|
if(abs(beta) > 0.0){
|
|
|
|
int N ; SizeSquare(A,N);
|
|
|
|
DenseMatrix<T> tmp; Resize(tmp,N,N); Fill(tmp,0);
|
|
|
|
T s;
|
|
for(int p=l; p<M; p++){
|
|
s = 0;
|
|
if(trans==0){
|
|
for(int i=k;i<j+1;i++) s = s + conj(v[i-k])*A[i][p];
|
|
}else{
|
|
for(int i=k;i<j+1;i++) s = s + v[i-k]*A[p][i];
|
|
}
|
|
s = beta*s;
|
|
if(trans==0){
|
|
for(int i=k;i<j+1;i++) tmp[i][p] = tmp(i,p) - s*v[i-k];
|
|
}else{
|
|
for(int i=k;i<j+1;i++) tmp[p][i] = tmp[p][i] - s*conj(v[i-k]);
|
|
}
|
|
}
|
|
for(int p=l; p<M; p++){
|
|
if(trans==0){
|
|
for(int i=k;i<j+1;i++) A[i][p] = A[i][p] + tmp[i][p];
|
|
}else{
|
|
for(int i=k;i<j+1;i++) A[p][i] = A[p][i] + tmp[p][i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|