1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-14 01:35:36 +00:00
Grid/tests/lanczos/FieldVectorIO.h
2017-10-11 10:12:07 +01:00

1086 lines
31 KiB
C++

namespace Grid {
namespace FieldVectorIO {
// zlib's crc32 gets 0.4 GB/s on KNL single thread
// below gets 4.8 GB/s
static uint32_t crc32_threaded(unsigned char* data, int64_t len, uint32_t previousCrc32 = 0) {
// crc32 of zlib was incorrect for very large sizes, so do it block-wise
uint32_t crc = previousCrc32;
off_t blk = 0;
off_t step = 1024*1024*1024;
while (len > step) {
crc = crc32(crc,&data[blk],step);
blk += step;
len -= step;
}
crc = crc32(crc,&data[blk],len);
return crc;
}
static int get_bfm_index( int* pos, int co, int* s ) {
int ls = s[0];
int NtHalf = s[4] / 2;
int simd_coor = pos[4] / NtHalf;
int regu_coor = (pos[1] + s[1] * (pos[2] + s[2] * ( pos[3] + s[3] * (pos[4] % NtHalf) ) )) / 2;
return regu_coor * ls * 48 + pos[0] * 48 + co * 4 + simd_coor * 2;
}
static void get_read_geometry(const GridBase* _grid,const std::vector<int>& cnodes,
std::map<int, std::vector<int> >& slots,
std::vector<int>& slot_lvol,
std::vector<int>& lvol,
int64_t& slot_lsites,int& ntotal) {
int _nd = (int)cnodes.size();
std::vector<int> nodes = cnodes;
slots.clear();
slot_lvol.clear();
lvol.clear();
int i;
ntotal = 1;
int64_t lsites = 1;
slot_lsites = 1;
for (i=0;i<_nd;i++) {
assert(_grid->_fdimensions[i] % nodes[i] == 0);
slot_lvol.push_back(_grid->_fdimensions[i] / nodes[i]);
lvol.push_back(_grid->_fdimensions[i] / _grid->_processors[i]);
lsites *= lvol.back();
slot_lsites *= slot_lvol.back();
ntotal *= nodes[i];
}
std::vector<int> lcoor, gcoor, scoor;
lcoor.resize(_nd); gcoor.resize(_nd); scoor.resize(_nd);
// create mapping of indices to slots
for (int lidx = 0; lidx < lsites; lidx++) {
Lexicographic::CoorFromIndex(lcoor,lidx,lvol);
for (int i=0;i<_nd;i++) {
gcoor[i] = lcoor[i] + _grid->_processor_coor[i]*lvol[i];
scoor[i] = gcoor[i] / slot_lvol[i];
}
int slot;
Lexicographic::IndexFromCoor(scoor,slot,nodes);
auto sl = slots.find(slot);
if (sl == slots.end())
slots[slot] = std::vector<int>();
slots[slot].push_back(lidx);
}
}
static void canonical_block_to_coarse_coordinates(GridBase* _coarsegrid,int nb,int& ii,int& oi) {
// canonical nb needs to be mapped in a coordinate on my coarsegrid (ii,io)
std::vector<int> _l = _coarsegrid->LocalDimensions();
std::vector<int> _cl = { _l[1], _l[2], _l[3], _l[4], _l[0] };
std::vector<int> _cc(_l.size());
Lexicographic::CoorFromIndex(_cc,nb,_cl);
std::vector<int> _c = { _cc[4], _cc[0], _cc[1], _cc[2], _cc[3] };
ii = _coarsegrid->iIndex(_c);
oi = _coarsegrid->oIndex(_c);
}
template<typename Field>
static bool read_argonne(BasisFieldVector<Field>& ret,const char* dir, const std::vector<int>& cnodes) {
GridBase* _grid = ret._v[0]._grid;
std::map<int, std::vector<int> > slots;
std::vector<int> slot_lvol, lvol;
int64_t slot_lsites;
int ntotal;
get_read_geometry(_grid,cnodes,
slots,slot_lvol,lvol,slot_lsites,
ntotal);
int _nd = (int)lvol.size();
// this is slow code to read the argonne file format for debugging purposes
int nperdir = ntotal / 32;
if (nperdir < 1)
nperdir=1;
std::cout << GridLogMessage << " Read " << dir << " nodes = " << cnodes << std::endl;
std::cout << GridLogMessage << " lvol = " << lvol << std::endl;
// for error messages
char hostname[1024];
gethostname(hostname, 1024);
// now load one slot at a time and fill the vector
for (auto sl=slots.begin();sl!=slots.end();sl++) {
std::vector<int>& idx = sl->second;
int slot = sl->first;
std::vector<float> rdata;
char buf[4096];
sprintf(buf,"%s/checksums.txt",dir); printf("read_argonne: Reading from %s\n",buf);
FILE* f = fopen(buf,"rt");
if (!f) {
fprintf(stderr,"Node %s cannot read %s\n",hostname,buf); fflush(stderr);
return false;
}
for (int l=0;l<3+slot;l++)
fgets(buf,sizeof(buf),f);
uint32_t crc_exp = strtol(buf, NULL, 16);
fclose(f);
// load one slot vector
sprintf(buf,"%s/%2.2d/%10.10d",dir,slot/nperdir,slot);
f = fopen(buf,"rb");
if (!f) {
fprintf(stderr,"Node %s cannot read %s\n",hostname,buf); fflush(stderr);
return false;
}
fseeko(f,0,SEEK_END);
off_t total_size = ftello(f);
fseeko(f,0,SEEK_SET);
int64_t size = slot_lsites / 2 * 24*4;
rdata.resize(size);
assert(total_size % size == 0);
int _Nfull = total_size / size;
ret._v.resize(_Nfull,ret._v[0]);
ret._Nm = _Nfull;
uint32_t crc = 0x0;
GridStopWatch gsw,gsw2;
for (int nev = 0;nev < _Nfull;nev++) {
gsw.Start();
assert(fread(&rdata[0],size,1,f) == 1);
gsw.Stop();
gsw2.Start();
crc = crc32_threaded((unsigned char*)&rdata[0],size,crc);
gsw2.Stop();
for (int i=0;i<size/4;i++) {
char* c = (char*)&rdata[i];
char tmp; int j;
for (j=0;j<2;j++) {
tmp = c[j]; c[j] = c[3-j]; c[3-j] = tmp;
}
}
// loop
ret._v[nev].checkerboard = Odd;
#pragma omp parallel
{
std::vector<int> lcoor, gcoor, scoor, slcoor;
lcoor.resize(_nd); gcoor.resize(_nd);
slcoor.resize(_nd); scoor.resize(_nd);
#pragma omp for
for (int64_t lidx = 0; lidx < idx.size(); lidx++) {
int llidx = idx[lidx];
Lexicographic::CoorFromIndex(lcoor,llidx,lvol);
for (int i=0;i<_nd;i++) {
gcoor[i] = lcoor[i] + _grid->_processor_coor[i]*lvol[i];
scoor[i] = gcoor[i] / slot_lvol[i];
slcoor[i] = gcoor[i] - scoor[i]*slot_lvol[i];
}
if ((lcoor[1]+lcoor[2]+lcoor[3]+lcoor[4]) % 2 == 1) {
// poke
iScalar<iVector<iVector<ComplexF, 3>, 4> > sc;
for (int s=0;s<4;s++)
for (int c=0;c<3;c++)
sc()(s)(c) = *(std::complex<float>*)&rdata[get_bfm_index(&slcoor[0],c+s*3, &slot_lvol[0] )];
pokeLocalSite(sc,ret._v[nev],lcoor);
}
}
}
}
fclose(f);
std::cout << GridLogMessage << "Loading slot " << slot << " with " << idx.size() << " points and "
<< _Nfull << " vectors in "
<< gsw.Elapsed() << " at "
<< ( (double)size * _Nfull / 1024./1024./1024. / gsw.useconds()*1000.*1000. )
<< " GB/s " << " crc32 = " << std::hex << crc << " crc32_expected = " << crc_exp << std::dec
<< " computed at "
<< ( (double)size * _Nfull / 1024./1024./1024. / gsw2.useconds()*1000.*1000. )
<< " GB/s "
<< std::endl;
assert(crc == crc_exp);
}
_grid->Barrier();
std::cout << GridLogMessage << "Loading complete" << std::endl;
return true;
}
template<typename Field>
static bool read_argonne(BasisFieldVector<Field>& ret,const char* dir) {
GridBase* _grid = ret._v[0]._grid;
char buf[4096];
sprintf(buf,"%s/nodes.txt",dir);
FILE* f = fopen(buf,"rt");
if (!f) {
if (_grid->IsBoss()) {
fprintf(stderr,"Attempting to load eigenvectors without secifying node layout failed due to absence of nodes.txt\n");
fflush(stderr);
}
return false;
}
std::vector<int> nodes((int)_grid->_processors.size());
for (int i =0;i<(int)_grid->_processors.size();i++)
assert(fscanf(f,"%d\n",&nodes[i])==1);
fclose(f);
return read_argonne(ret,dir,nodes);
}
static void flush_bytes(FILE* f, std::vector<char>& fbuf) {
if (fbuf.size()) {
if (fwrite(&fbuf[0],fbuf.size(),1,f) != 1) {
fprintf(stderr,"Write failed of %g GB!\n",(double)fbuf.size() / 1024./1024./1024.);
exit(2);
}
fbuf.resize(0);
}
}
static void write_bytes(void* buf, int64_t s, FILE* f, std::vector<char>& fbuf, uint32_t& crc) {
static double data_counter = 0.0;
static GridStopWatch gsw_crc, gsw_flush1,gsw_flush2,gsw_write,gsw_memcpy;
if (s == 0)
return;
// checksum
gsw_crc.Start();
crc = crc32_threaded((unsigned char*)buf,s,crc);
gsw_crc.Stop();
if (s > fbuf.capacity()) {
// cannot buffer this, so first flush current buffer contents and then write this directly to file
gsw_flush1.Start();
flush_bytes(f,fbuf);
gsw_flush1.Stop();
gsw_write.Start();
if (fwrite(buf,s,1,f) != 1) {
fprintf(stderr,"Write failed of %g GB!\n",(double)s / 1024./1024./1024.);
exit(2);
}
gsw_write.Stop();
}
// no room left in buffer, flush to disk
if (fbuf.size() + s > fbuf.capacity()) {
gsw_flush2.Start();
flush_bytes(f,fbuf);
gsw_flush2.Stop();
}
// then fill buffer again
{
gsw_memcpy.Start();
size_t t = fbuf.size();
fbuf.resize(t + s);
memcpy(&fbuf[t],buf,s);
gsw_memcpy.Stop();
}
data_counter += (double)s;
if (data_counter > 1024.*1024.*20.) {
std::cout << GridLogMessage << "Writing " << ((double)data_counter / 1024./1024./1024.) << " GB at"
" crc = " << gsw_crc.Elapsed() << " flush1 = " << gsw_flush1.Elapsed() << " flush2 = " << gsw_flush2.Elapsed() <<
" write = " << gsw_write.Elapsed() << " memcpy = " << gsw_memcpy.Elapsed() << std::endl;
data_counter = 0.0;
gsw_crc.Reset();
gsw_write.Reset();
gsw_memcpy.Reset();
gsw_flush1.Reset();
gsw_flush2.Reset();
}
}
static void write_floats(FILE* f, std::vector<char>& fbuf, uint32_t& crc, float* buf, int64_t n) {
write_bytes(buf,n*sizeof(float),f,fbuf,crc);
}
static void read_floats(char* & ptr, float* out, int64_t n) {
float* in = (float*)ptr;
ptr += 4*n;
for (int64_t i=0;i<n;i++)
out[i] = in[i];
}
static int fp_map(float in, float min, float max, int N) {
// Idea:
//
// min=-6
// max=6
//
// N=1
// [-6,0] -> 0, [0,6] -> 1; reconstruct 0 -> -3, 1-> 3
//
// N=2
// [-6,-2] -> 0, [-2,2] -> 1, [2,6] -> 2; reconstruct 0 -> -4, 1->0, 2->4
int ret = (int) ( (float)(N+1) * ( (in - min) / (max - min) ) );
if (ret == N+1) {
ret = N;
}
return ret;
}
static float fp_unmap(int val, float min, float max, int N) {
return min + (float)(val + 0.5) * (max - min) / (float)( N + 1 );
}
#define SHRT_UMAX 65535
#define FP16_BASE 1.4142135623730950488
#define FP16_COEF_EXP_SHARE_FLOATS 10
static float unmap_fp16_exp(unsigned short e) {
float de = (float)((int)e - SHRT_UMAX / 2);
return ::pow( FP16_BASE, de );
}
// can assume that v >=0 and need to guarantee that unmap_fp16_exp(map_fp16_exp(v)) >= v
static unsigned short map_fp16_exp(float v) {
// float has exponents 10^{-44.85} .. 10^{38.53}
int exp = (int)ceil(::log(v) / ::log(FP16_BASE)) + SHRT_UMAX / 2;
if (exp < 0 || exp > SHRT_UMAX) {
fprintf(stderr,"Error in map_fp16_exp(%g,%d)\n",v,exp);
exit(3);
}
return (unsigned short)exp;
}
template<typename OPT>
static void read_floats_fp16(char* & ptr, OPT* out, int64_t n, int nsc) {
int64_t nsites = n / nsc;
if (n % nsc) {
fprintf(stderr,"Invalid size in write_floats_fp16\n");
exit(4);
}
unsigned short* in = (unsigned short*)ptr;
ptr += 2*(n+nsites);
// do for each site
for (int64_t site = 0;site<nsites;site++) {
OPT* ev = &out[site*nsc];
unsigned short* bptr = &in[site*(nsc + 1)];
unsigned short exp = *bptr++;
OPT max = unmap_fp16_exp(exp);
OPT min = -max;
for (int i=0;i<nsc;i++) {
ev[i] = fp_unmap( *bptr++, min, max, SHRT_UMAX );
}
}
}
template<typename OPT>
static void write_floats_fp16(FILE* f, std::vector<char>& fbuf, uint32_t& crc, OPT* in, int64_t n, int nsc) {
int64_t nsites = n / nsc;
if (n % nsc) {
fprintf(stderr,"Invalid size in write_floats_fp16\n");
exit(4);
}
unsigned short* buf = (unsigned short*)malloc( sizeof(short) * (n + nsites) );
if (!buf) {
fprintf(stderr,"Out of mem\n");
exit(1);
}
// do for each site
#pragma omp parallel for
for (int64_t site = 0;site<nsites;site++) {
OPT* ev = &in[site*nsc];
unsigned short* bptr = &buf[site*(nsc + 1)];
OPT max = fabs(ev[0]);
OPT min;
for (int i=0;i<nsc;i++) {
if (fabs(ev[i]) > max)
max = fabs(ev[i]);
}
unsigned short exp = map_fp16_exp(max);
max = unmap_fp16_exp(exp);
min = -max;
*bptr++ = exp;
for (int i=0;i<nsc;i++) {
int val = fp_map( ev[i], min, max, SHRT_UMAX );
if (val < 0 || val > SHRT_UMAX) {
fprintf(stderr,"Assert failed: val = %d (%d), ev[i] = %.15g, max = %.15g, exp = %d\n",val,SHRT_UMAX,ev[i],max,(int)exp);
exit(48);
}
*bptr++ = (unsigned short)val;
}
}
write_bytes(buf,sizeof(short)*(n + nsites),f,fbuf,crc);
free(buf);
}
template<typename Field,typename CoarseField>
static bool read_compressed_vectors(const char* dir,BlockProjector<Field>& pr,BasisFieldVector<CoarseField>& coef, int ngroups = 1) {
const BasisFieldVector<Field>& basis = pr._evec;
GridBase* _grid = basis._v[0]._grid;
// for error messages
char hostname[1024];
gethostname(hostname, 1024);
std::cout << GridLogMessage << "Ready on host " << hostname << " with " << ngroups << " reader groups" << std::endl;
// first read metadata
char buf[4096];
sprintf(buf,"%s/metadata.txt",dir);
std::vector<uint32_t> s,b,nb,nn,crc32;
s.resize(5); b.resize(5); nb.resize(5); nn.resize(5);
uint32_t neig, nkeep, nkeep_single, blocks, _FP16_COEF_EXP_SHARE_FLOATS;
uint32_t nprocessors = 1;
FILE* f = 0;
uint32_t status = 0;
if (_grid->IsBoss()) {
f = fopen(buf,"rb");
status=f ? 1 : 0;
}
_grid->GlobalSum(status);
std::cout << GridLogMessage << "Read params status " << status << std::endl;
if (!status) {
return false;
}
#define _IRL_READ_INT(buf,p) if (f) { assert(fscanf(f,buf,p)==1); } else { *(p) = 0; } _grid->GlobalSum(*(p));
for (int i=0;i<5;i++) {
sprintf(buf,"s[%d] = %%d\n",i);
_IRL_READ_INT(buf,&s[(i+1)%5]);
}
for (int i=0;i<5;i++) {
sprintf(buf,"b[%d] = %%d\n",i);
_IRL_READ_INT(buf,&b[(i+1)%5]);
}
for (int i=0;i<5;i++) {
sprintf(buf,"nb[%d] = %%d\n",i);
_IRL_READ_INT(buf,&nb[(i+1)%5]);
}
_IRL_READ_INT("neig = %d\n",&neig);
_IRL_READ_INT("nkeep = %d\n",&nkeep);
_IRL_READ_INT("nkeep_single = %d\n",&nkeep_single);
_IRL_READ_INT("blocks = %d\n",&blocks);
_IRL_READ_INT("FP16_COEF_EXP_SHARE_FLOATS = %d\n",&_FP16_COEF_EXP_SHARE_FLOATS);
for (int i=0;i<5;i++) {
assert(_grid->FullDimensions()[i] % s[i] == 0);
nn[i] = _grid->FullDimensions()[i] / s[i];
nprocessors *= nn[i];
}
std::cout << GridLogMessage << "Reading data that was generated on node-layout " << nn << std::endl;
crc32.resize(nprocessors);
for (int i =0;i<nprocessors;i++) {
sprintf(buf,"crc32[%d] = %%X\n",i);
_IRL_READ_INT(buf,&crc32[i]);
}
#undef _IRL_READ_INT
if (f)
fclose(f);
// allocate memory
assert(std::equal(pr._bgrid._bs.begin(),pr._bgrid._bs.end(),b.begin())); // needs to be the same for now
assert(pr._evec.size() == nkeep); // needs to be the same since this is compile-time fixed
coef.resize(neig);
// now get read geometry
std::map<int, std::vector<int> > slots;
std::vector<int> slot_lvol, lvol;
int64_t slot_lsites;
int ntotal;
std::vector<int> _nn(nn.begin(),nn.end());
get_read_geometry(_grid,_nn,
slots,slot_lvol,lvol,slot_lsites,
ntotal);
int _nd = (int)lvol.size();
// types
typedef typename Field::scalar_type Coeff_t;
typedef typename CoarseField::scalar_type CoeffCoarse_t;
// slot layout
int nperdir = ntotal / 32;
if (nperdir < 1)
nperdir=1;
// add read groups
for (int ngroup=0;ngroup<ngroups;ngroup++) {
bool action = _grid->ThisRank() % ngroups == ngroup;
std::cout << GridLogMessage << "Reading in group " << ngroup << " / " << ngroups << std::endl;
// load all necessary slots and store them appropriately
for (auto sl=slots.begin();sl!=slots.end();sl++) {
std::vector<int>& idx = sl->second;
int slot = sl->first;
std::vector<float> rdata;
char buf[4096];
if (action) {
// load one slot vector
sprintf(buf,"%s/%2.2d/%10.10d.compressed",dir,slot/nperdir,slot);
f = fopen(buf,"rb");
if (!f) {
fprintf(stderr,"Node %s cannot read %s\n",hostname,buf); fflush(stderr);
return false;
}
}
uint32_t crc = 0x0;
off_t size;
GridStopWatch gsw;
_grid->Barrier();
gsw.Start();
std::vector<char> raw_in(0);
if (action) {
fseeko(f,0,SEEK_END);
size = ftello(f);
fseeko(f,0,SEEK_SET);
raw_in.resize(size);
assert(fread(&raw_in[0],size,1,f) == 1);
}
_grid->Barrier();
gsw.Stop();
RealD totalGB = (RealD)size / 1024./1024./1024 * _grid->_Nprocessors;
RealD seconds = gsw.useconds() / 1e6;
if (action) {
std::cout << GridLogMessage << "[" << slot << "] Read " << totalGB << " GB of compressed data at " << totalGB/seconds << " GB/s" << std::endl;
uint32_t crc_comp = crc32_threaded((unsigned char*)&raw_in[0],size,0);
if (crc_comp != crc32[slot]) {
std::cout << "Node " << hostname << " found crc mismatch for file " << buf << " (" << std::hex << crc_comp << " vs " << crc32[slot] << std::dec << ")" << std::endl;
std::cout << "Byte size: " << size << std::endl;
}
assert(crc_comp == crc32[slot]);
}
_grid->Barrier();
if (action) {
fclose(f);
}
char* ptr = &raw_in[0];
GridStopWatch gsw2;
gsw2.Start();
if (action) {
int nsingleCap = nkeep_single;
if (pr._evec.size() < nsingleCap)
nsingleCap = pr._evec.size();
int _cf_block_size = slot_lsites * 12 / 2 / blocks;
#define FP_16_SIZE(a,b) (( (a) + (a/b) )*2)
// first read single precision basis vectors
#pragma omp parallel
{
std::vector<float> buf(_cf_block_size * 2);
#pragma omp for
for (int nb=0;nb<blocks;nb++) {
for (int i=0;i<nsingleCap;i++) {
char* lptr = ptr + buf.size()*(i + nsingleCap*nb)*4;
read_floats(lptr, &buf[0], buf.size() );
int mnb = pr._bgrid.globalToLocalCanonicalBlock(slot,_nn,nb);
if (mnb != -1)
pr._bgrid.pokeBlockOfVectorCanonical(mnb,pr._evec._v[i],buf);
}
}
#pragma omp barrier
#pragma omp single
{
ptr = ptr + buf.size()*nsingleCap*blocks*4;
}
}
// TODO: at this point I should add a checksum test for block_sp(nb,v,v) for all blocks, then I would know that the mapping
// to blocks is OK at this point; after that ...
// then read fixed precision basis vectors
#pragma omp parallel
{
std::vector<float> buf(_cf_block_size * 2);
#pragma omp for
for (int nb=0;nb<blocks;nb++) {
for (int i=nsingleCap;i<(int)pr._evec.size();i++) {
char* lptr = ptr + FP_16_SIZE( buf.size(), 24 )*((i-nsingleCap) + (pr._evec.size() - nsingleCap)*nb);
read_floats_fp16(lptr, &buf[0], buf.size(), 24);
int mnb = pr._bgrid.globalToLocalCanonicalBlock(slot,_nn,nb);
if (mnb != -1)
pr._bgrid.pokeBlockOfVectorCanonical(mnb,pr._evec._v[i],buf);
}
}
#pragma omp barrier
#pragma omp single
{
ptr = ptr + FP_16_SIZE( buf.size()*(pr._evec.size() - nsingleCap)*blocks, 24 );
}
}
#pragma omp parallel
{
std::vector<float> buf1(nkeep_single*2);
std::vector<float> buf2((nkeep - nkeep_single)*2);
#pragma omp for
for (int j=0;j<(int)coef.size();j++)
for (int nb=0;nb<blocks;nb++) {
// get local coordinate on coarse grid
int ii,oi;
int mnb = pr._bgrid.globalToLocalCanonicalBlock(slot,_nn,nb);
if (mnb != -1)
canonical_block_to_coarse_coordinates(coef._v[0]._grid,mnb,ii,oi);
char* lptr = ptr + (4*buf1.size() + FP_16_SIZE(buf2.size(), _FP16_COEF_EXP_SHARE_FLOATS))*(nb + j*blocks);
int l;
read_floats(lptr, &buf1[0], buf1.size() );
if (mnb != -1) {
for (l=0;l<nkeep_single;l++) {
((CoeffCoarse_t*)&coef._v[j]._odata[oi]._internal._internal[l])[ii] = CoeffCoarse_t(buf1[2*l+0],buf1[2*l+1]);
}
}
read_floats_fp16(lptr, &buf2[0], buf2.size(), _FP16_COEF_EXP_SHARE_FLOATS);
if (mnb != -1) {
for (l=nkeep_single;l<nkeep;l++) {
((CoeffCoarse_t*)&coef._v[j]._odata[oi]._internal._internal[l])[ii] = CoeffCoarse_t(buf2[2*(l-nkeep_single)+0],buf2[2*(l-nkeep_single)+1]);
}
}
}
}
// set checkerboard
for (int i=0;i<(int)pr._evec.size();i++)
pr._evec._v[i].checkerboard = Odd;
gsw2.Stop();
seconds=gsw2.useconds()/1e6;
std::cout << GridLogMessage << "Processed " << totalGB << " GB of compressed data at " << totalGB/seconds << " GB/s" << std::endl;
}
}
}
#undef FP_16_SIZE
return true;
}
static bool DirectoryExists(const char *path) {
struct stat info;
return ((stat( path, &info ) == 0) && (info.st_mode & S_IFDIR));
}
static void conditionalMkDir(const char* path) {
if (!DirectoryExists(path))
mkdir(path,ACCESSPERMS);
}
template<typename Field,typename CoarseField>
static void write_compressed_vectors(const char* dir,const BlockProjector<Field>& pr,
const BasisFieldVector<CoarseField>& coef,
int nsingle,int writer_nodes = 0) {
GridStopWatch gsw;
const BasisFieldVector<Field>& basis = pr._evec;
GridBase* _grid = basis._v[0]._grid;
std::vector<int> _l = _grid->FullDimensions();
for (int i=0;i<(int)_l.size();i++)
_l[i] /= _grid->_processors[i];
_grid->Barrier();
gsw.Start();
char buf[4096];
// Making the directories is somewhat tricky.
// If we run on a joint filesystem we would just
// have the boss create the directories and then
// have a barrier. We also want to be able to run
// on local /scratch, so potentially all nodes need
// to create their own directories. So do the following
// for now.
for (int j=0;j<_grid->_Nprocessors;j++) {
if (j == _grid->ThisRank()) {
conditionalMkDir(dir);
for (int i=0;i<32;i++) {
sprintf(buf,"%s/%2.2d",dir,i);
conditionalMkDir(buf);
}
_grid->Barrier(); // make sure directories are ready
}
}
typedef typename Field::scalar_type Coeff_t;
typedef typename CoarseField::scalar_type CoeffCoarse_t;
int nperdir = _grid->_Nprocessors / 32;
if (nperdir < 1)
nperdir=1;
int slot;
Lexicographic::IndexFromCoor(_grid->_processor_coor,slot,_grid->_processors);
int64_t off = 0x0;
uint32_t crc = 0x0;
if (writer_nodes < 1)
writer_nodes = _grid->_Nprocessors;
int groups = _grid->_Nprocessors / writer_nodes;
if (groups<1)
groups = 1;
std::cout << GridLogMessage << " Write " << dir << " nodes = " << writer_nodes << std::endl;
for (int group=0;group<groups;group++) {
_grid->Barrier();
if (_grid->ThisRank() % groups == group) {
sprintf(buf,"%s/%2.2d/%10.10d.compressed",dir,slot/nperdir,slot);
FILE* f = fopen(buf,"wb");
assert(f);
//buffer does not seem to help
//assert(!setvbuf ( f , NULL , _IOFBF , 1024*1024*2 ));
int nsingleCap = nsingle;
if (pr._evec.size() < nsingleCap)
nsingleCap = pr._evec.size();
GridStopWatch gsw1,gsw2,gsw3,gsw4,gsw5;
gsw1.Start();
std::vector<char> fbuf;
fbuf.reserve( 1024 * 1024 * 8 );
// first write single precision basis vectors
for (int nb=0;nb<pr._bgrid._blocks;nb++) {
for (int i=0;i<nsingleCap;i++) {
std::vector<float> buf;
pr._bgrid.peekBlockOfVectorCanonical(nb,pr._evec._v[i],buf);
#if 0
{
RealD nrm = 0.0;
for (int j=0;j<(int)buf.size();j++)
nrm += buf[j]*buf[j];
std::cout << GridLogMessage << "Norm: " << nrm << std::endl;
}
#endif
write_floats(f,fbuf,crc, &buf[0], buf.size() );
}
}
gsw1.Stop();
gsw2.Start();
// then write fixed precision basis vectors
for (int nb=0;nb<pr._bgrid._blocks;nb++) {
for (int i=nsingleCap;i<(int)pr._evec.size();i++) {
std::vector<float> buf;
pr._bgrid.peekBlockOfVectorCanonical(nb,pr._evec._v[i],buf);
write_floats_fp16(f,fbuf,crc, &buf[0], buf.size(), 24);
}
}
gsw2.Stop();
assert(coef._v[0]._grid->_isites*coef._v[0]._grid->_osites == pr._bgrid._blocks);
gsw3.Start();
for (int j=0;j<(int)coef.size();j++) {
int64_t size1 = nsingleCap*2;
int64_t size2 = 2*(pr._evec.size()-nsingleCap);
int64_t size = size1;
if (size2>size)
size=size2;
std::vector<float> buf(size);
//RealD nrmTest = 0.0;
for (int nb=0;nb<pr._bgrid._blocks;nb++) {
// get local coordinate on coarse grid
int ii, oi;
canonical_block_to_coarse_coordinates(coef._v[0]._grid,nb,ii,oi);
gsw4.Start();
gsw5.Start();
for (int l=0;l<nsingleCap;l++) {
auto res = ((CoeffCoarse_t*)&coef._v[j]._odata[oi]._internal._internal[l])[ii];
buf[2*l+0] = res.real();
buf[2*l+1] = res.imag();
//nrmTest += res.real() * res.real() + res.imag() * res.imag();
}
gsw5.Stop();
write_floats(f,fbuf,crc, &buf[0], size1 );
gsw4.Stop();
for (int l=nsingleCap;l<(int)pr._evec.size();l++) {
auto res = ((CoeffCoarse_t*)&coef._v[j]._odata[oi]._internal._internal[l])[ii];
buf[2*(l-nsingleCap)+0] = res.real();
buf[2*(l-nsingleCap)+1] = res.imag();
//nrmTest += res.real() * res.real() + res.imag() * res.imag();
}
write_floats_fp16(f,fbuf,crc, &buf[0], size2, FP16_COEF_EXP_SHARE_FLOATS);
}
//_grid->GlobalSum(nrmTest);
//std::cout << GridLogMessage << "Test norm: " << nrmTest << std::endl;
}
gsw3.Stop();
flush_bytes(f,fbuf);
off = ftello(f);
fclose(f);
std::cout<<GridLogMessage << "Timing: write single basis in " << gsw1.Elapsed() << " and fp16 in " << gsw2.Elapsed() << " and coefficients in " << gsw3.Elapsed() << " (" <<
gsw4.Elapsed() << ", " << gsw5.Elapsed() << ")" << std::endl;
}
}
_grid->Barrier();
gsw.Stop();
RealD totalGB = (RealD)off / 1024./1024./1024 * _grid->_Nprocessors;
RealD seconds = gsw.useconds() / 1e6;
std::cout << GridLogMessage << "Write " << totalGB << " GB of compressed data at " << totalGB/seconds << " GB/s in " << seconds << " s" << std::endl;
// gather crcs
std::vector<uint32_t> crcs(_grid->_Nprocessors);
for (int i=0;i<_grid->_Nprocessors;i++) {
crcs[i] = 0x0;
}
crcs[slot] = crc;
for (int i=0;i<_grid->_Nprocessors;i++) {
_grid->GlobalSum(crcs[i]);
}
if (_grid->IsBoss()) {
sprintf(buf,"%s/metadata.txt",dir);
FILE* f = fopen(buf,"wb");
assert(f);
for (int i=0;i<5;i++)
fprintf(f,"s[%d] = %d\n",i,_grid->FullDimensions()[(i+1)%5] / _grid->_processors[(i+1)%5]);
for (int i=0;i<5;i++)
fprintf(f,"b[%d] = %d\n",i,pr._bgrid._bs[(i+1)%5]);
for (int i=0;i<5;i++)
fprintf(f,"nb[%d] = %d\n",i,pr._bgrid._nb[(i+1)%5]);
fprintf(f,"neig = %d\n",(int)coef.size());
fprintf(f,"nkeep = %d\n",(int)pr._evec.size());
fprintf(f,"nkeep_single = %d\n",nsingle);
fprintf(f,"blocks = %d\n",pr._bgrid._blocks);
fprintf(f,"FP16_COEF_EXP_SHARE_FLOATS = %d\n",FP16_COEF_EXP_SHARE_FLOATS);
for (int i =0;i<_grid->_Nprocessors;i++)
fprintf(f,"crc32[%d] = %X\n",i,crcs[i]);
fclose(f);
}
}
template<typename Field>
static void write_argonne(const BasisFieldVector<Field>& ret,const char* dir) {
GridBase* _grid = ret._v[0]._grid;
std::vector<int> _l = _grid->FullDimensions();
for (int i=0;i<(int)_l.size();i++)
_l[i] /= _grid->_processors[i];
char buf[4096];
if (_grid->IsBoss()) {
mkdir(dir,ACCESSPERMS);
for (int i=0;i<32;i++) {
sprintf(buf,"%s/%2.2d",dir,i);
mkdir(buf,ACCESSPERMS);
}
}
_grid->Barrier(); // make sure directories are ready
int nperdir = _grid->_Nprocessors / 32;
if (nperdir < 1)
nperdir=1;
std::cout << GridLogMessage << " Write " << dir << " nodes = " << _grid->_Nprocessors << std::endl;
int slot;
Lexicographic::IndexFromCoor(_grid->_processor_coor,slot,_grid->_processors);
//printf("Slot: %d <> %d\n",slot, _grid->ThisRank());
sprintf(buf,"%s/%2.2d/%10.10d",dir,slot/nperdir,slot);
FILE* f = fopen(buf,"wb");
assert(f);
int N = (int)ret._v.size();
uint32_t crc = 0x0;
int64_t cf_size = _grid->oSites()*_grid->iSites()*12;
std::vector< float > rdata(cf_size*2);
GridStopWatch gsw1,gsw2;
for (int i=0;i<N;i++) {
if (ret._v[i].checkerboard != Odd)
continue;
// create buffer and put data in argonne format in there
std::vector<int> coor(_l.size());
for (coor[1] = 0;coor[1]<_l[1];coor[1]++) {
for (coor[2] = 0;coor[2]<_l[2];coor[2]++) {
for (coor[3] = 0;coor[3]<_l[3];coor[3]++) {
for (coor[4] = 0;coor[4]<_l[4];coor[4]++) {
for (coor[0] = 0;coor[0]<_l[0];coor[0]++) {
if ((coor[1]+coor[2]+coor[3]+coor[4]) % 2 == 1) {
// peek
iScalar<iVector<iVector<ComplexF, 3>, 4> > sc;
peekLocalSite(sc,ret._v[i],coor);
for (int s=0;s<4;s++)
for (int c=0;c<3;c++)
*(std::complex<float>*)&rdata[get_bfm_index(&coor[0],c+s*3, &_l[0] )] = sc()(s)(c);
}
}
}
}
}
}
// endian flip
for (int i=0;i<cf_size*2;i++) {
char* c = (char*)&rdata[i];
char tmp; int j;
for (j=0;j<2;j++) {
tmp = c[j]; c[j] = c[3-j]; c[3-j] = tmp;
}
}
// create crc of buffer
gsw1.Start();
crc = crc32_threaded((unsigned char*)&rdata[0],cf_size*2*4,crc);
gsw1.Stop();
// write out
gsw2.Start();
assert(fwrite(&rdata[0],cf_size*2*4,1,f)==1);
gsw2.Stop();
}
fclose(f);
// gather crc's and write out
std::vector<uint32_t> crcs(_grid->_Nprocessors);
for (int i=0;i<_grid->_Nprocessors;i++) {
crcs[i] = 0x0;
}
crcs[slot] = crc;
for (int i=0;i<_grid->_Nprocessors;i++) {
_grid->GlobalSum(crcs[i]);
}
if (_grid->IsBoss()) {
sprintf(buf,"%s/checksums.txt",dir);
FILE* f = fopen(buf,"wt");
assert(f);
fprintf(f,"00000000\n\n");
for (int i =0;i<_grid->_Nprocessors;i++)
fprintf(f,"%X\n",crcs[i]);
fclose(f);
sprintf(buf,"%s/nodes.txt",dir);
f = fopen(buf,"wt");
assert(f);
for (int i =0;i<(int)_grid->_processors.size();i++)
fprintf(f,"%d\n",_grid->_processors[i]);
fclose(f);
}
std::cout << GridLogMessage << "Writing slot " << slot << " with "
<< N << " vectors in "
<< gsw2.Elapsed() << " at "
<< ( (double)cf_size*2*4 * N / 1024./1024./1024. / gsw2.useconds()*1000.*1000. )
<< " GB/s with crc computed at "
<< ( (double)cf_size*2*4 * N / 1024./1024./1024. / gsw1.useconds()*1000.*1000. )
<< " GB/s "
<< std::endl;
_grid->Barrier();
std::cout << GridLogMessage << "Writing complete" << std::endl;
}
}
}