1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-14 09:45:36 +00:00
Grid/tests/solver/Test_wilsonclover_mg_lime.cc
2019-03-04 11:30:15 +00:00

195 lines
7.7 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/solver/Test_wilsonclover_mg_mp.cc
Copyright (C) 2015-2018
Author: Daniel Richtmann <daniel.richtmann@ur.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* */
#include <Grid/Grid.h>
#include <Test_multigrid_common.h>
using namespace std;
using namespace Grid;
using namespace Grid::QCD;
int main(int argc, char **argv) {
Grid_init(&argc, &argv);
// clang-format off
GridCartesian *FGrid_d = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexD::Nsimd()), GridDefaultMpi());
GridCartesian *FGrid_f = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd, vComplexF::Nsimd()), GridDefaultMpi());
GridRedBlackCartesian *FrbGrid_d = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid_d);
GridRedBlackCartesian *FrbGrid_f = SpaceTimeGrid::makeFourDimRedBlackGrid(FGrid_f);
// clang-format on
std::vector<int> fSeeds({1, 2, 3, 4});
GridParallelRNG fPRNG(FGrid_d);
fPRNG.SeedFixedIntegers(fSeeds);
// clang-format off
LatticeFermionD src_d(FGrid_d); gaussian(fPRNG, src_d);
LatticeFermionD resultMGD_d(FGrid_d); resultMGD_d = zero;
LatticeFermionD resultMGF_d(FGrid_d); resultMGF_d = zero;
LatticeGaugeFieldD Umu_d(FGrid_d);
#if 0
{
FieldMetaData header;
std::string file("./qcdsf.769.00399.lime");
std::cout <<GridLogMessage<<"**************************************"<<std::endl;
std::cout <<GridLogMessage<<"** Reading back ILDG conf *********"<<std::endl;
std::cout <<GridLogMessage<<"**************************************"<<std::endl;
IldgReader _IldgReader;
_IldgReader.open(file);
_IldgReader.readConfiguration(Umu_d,header);
_IldgReader.close();
}
#else
{
FieldMetaData header;
std::string file("./ckpoint_lat.IEEE64BIG.1100");
NerscIO::readConfiguration(Umu_d,header,file);
}
#endif
// SU3::HotConfiguration(fPRNG, Umu_d);
LatticeGaugeFieldF Umu_f(FGrid_f); precisionChange(Umu_f, Umu_d);
// clang-format on
RealD mass = -0.25;
RealD csw_r = 1.0;
RealD csw_t = 1.0;
MultiGridParams mgParams;
std::string inputXml{"./mg_params.xml"};
if(GridCmdOptionExists(argv, argv + argc, "--inputxml")) {
inputXml = GridCmdOptionPayload(argv, argv + argc, "--inputxml");
assert(inputXml.length() != 0);
}
{
XmlWriter writer("mg_params_template.xml");
write(writer, "Params", mgParams);
std::cout << GridLogMessage << "Written mg_params_template.xml" << std::endl;
XmlReader reader(inputXml);
read(reader, "Params", mgParams);
std::cout << GridLogMessage << "Read in " << inputXml << std::endl;
}
checkParameterValidity(mgParams);
std::cout << mgParams << std::endl;
LevelInfo levelInfo_d(FGrid_d, mgParams);
LevelInfo levelInfo_f(FGrid_f, mgParams);
// Note: We do chiral doubling, so actually only nbasis/2 full basis vectors are used
const int nbasis = 40;
WilsonCloverFermionD Dwc_d(Umu_d, *FGrid_d, *FrbGrid_d, mass, csw_r, csw_t);
WilsonCloverFermionF Dwc_f(Umu_f, *FGrid_f, *FrbGrid_f, mass, csw_r, csw_t);
MdagMLinearOperator<WilsonCloverFermionD, LatticeFermionD> MdagMOpDwc_d(Dwc_d);
MdagMLinearOperator<WilsonCloverFermionF, LatticeFermionF> MdagMOpDwc_f(Dwc_f);
std::cout << GridLogMessage << "**************************************************" << std::endl;
std::cout << GridLogMessage << "Testing single-precision Multigrid for Wilson Clover" << std::endl;
std::cout << GridLogMessage << "**************************************************" << std::endl;
auto MGPreconDwc_f = createMGInstance<vSpinColourVectorF, vTComplexF, nbasis, WilsonCloverFermionF>(mgParams, levelInfo_f, Dwc_f, Dwc_f);
MGPreconDwc_f->setup();
if(GridCmdOptionExists(argv, argv + argc, "--runchecks")) {
MGPreconDwc_f->runChecks(1e-6);
}
MixedPrecisionFlexibleGeneralisedMinimalResidual<LatticeFermionD, LatticeFermionF> MPFGMRESPREC(
1.0e-12, 50000, FGrid_f, *MGPreconDwc_f, 100, false);
std::cout << std::endl << "Starting with a new solver" << std::endl;
MPFGMRESPREC(MdagMOpDwc_d, src_d, resultMGF_d);
MGPreconDwc_f->reportTimings();
if(GridCmdOptionExists(argv, argv + argc, "--docomparison")) {
std::cout << GridLogMessage << "**************************************************" << std::endl;
std::cout << GridLogMessage << "Testing double-precision Multigrid for Wilson Clover" << std::endl;
std::cout << GridLogMessage << "**************************************************" << std::endl;
auto MGPreconDwc_d = createMGInstance<vSpinColourVectorD, vTComplexD, nbasis, WilsonCloverFermionD>(mgParams, levelInfo_d, Dwc_d, Dwc_d);
MGPreconDwc_d->setup();
if(GridCmdOptionExists(argv, argv + argc, "--runchecks")) {
MGPreconDwc_d->runChecks(1e-13);
}
FlexibleGeneralisedMinimalResidual<LatticeFermionD> FGMRESPREC(1.0e-12, 50000, *MGPreconDwc_d, 100, false);
std::cout << std::endl << "Starting with a new solver" << std::endl;
FGMRESPREC(MdagMOpDwc_d, src_d, resultMGD_d);
MGPreconDwc_d->reportTimings();
std::cout << GridLogMessage << "**************************************************" << std::endl;
std::cout << GridLogMessage << "Comparing single-precision Multigrid with double-precision one for Wilson Clover" << std::endl;
std::cout << GridLogMessage << "**************************************************" << std::endl;
LatticeFermionD diffFullSolver(FGrid_d);
RealD deviationFullSolver = axpy_norm(diffFullSolver, -1.0, resultMGF_d, resultMGD_d);
// clang-format off
LatticeFermionF src_f(FGrid_f); precisionChange(src_f, src_d);
LatticeFermionF resMGF_f(FGrid_f); resMGF_f = zero;
LatticeFermionD resMGD_d(FGrid_d); resMGD_d = zero;
// clang-format on
(*MGPreconDwc_f)(src_f, resMGF_f);
(*MGPreconDwc_d)(src_d, resMGD_d);
LatticeFermionD diffOnlyMG(FGrid_d);
LatticeFermionD resMGF_d(FGrid_d);
precisionChange(resMGF_d, resMGF_f);
RealD deviationOnlyPrec = axpy_norm(diffOnlyMG, -1.0, resMGF_d, resMGD_d);
// clang-format off
std::cout << GridLogMessage << "Absolute difference between FGMRES preconditioned by double and single precicision MG: " << deviationFullSolver << std::endl;
std::cout << GridLogMessage << "Relative deviation between FGMRES preconditioned by double and single precicision MG: " << deviationFullSolver / norm2(resultMGD_d) << std::endl;
std::cout << GridLogMessage << "Absolute difference between one iteration of MG Prec in double and single precision: " << deviationOnlyPrec << std::endl;
std::cout << GridLogMessage << "Relative deviation between one iteration of MG Prec in double and single precision: " << deviationOnlyPrec / norm2(resMGD_d) << std::endl;
// clang-format on
}
Grid_finalize();
}