1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 15:55:37 +00:00
Grid/extras/Hadrons/Modules/MContraction/A2AMesonField.hpp

486 lines
16 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: extras/Hadrons/Modules/MContraction/A2AMesonField.hpp
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef Hadrons_MContraction_A2AMesonField_hpp_
#define Hadrons_MContraction_A2AMesonField_hpp_
#include <Grid/Hadrons/Global.hpp>
#include <Grid/Hadrons/Module.hpp>
#include <Grid/Hadrons/ModuleFactory.hpp>
#include <Grid/Hadrons/A2AVectors.hpp>
#include <Grid/Eigen/unsupported/CXX11/Tensor>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* All-to-all meson field creation *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MContraction)
typedef std::pair<Gamma::Algebra, Gamma::Algebra> GammaPair;
class A2AMesonFieldPar : Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(A2AMesonFieldPar,
int, cacheBlock,
int, schurBlock,
int, Nmom,
std::string, v,
std::string, w,
std::string, output);
};
template <typename FImpl>
class TA2AMesonField : public Module<A2AMesonFieldPar>
{
public:
FERM_TYPE_ALIASES(FImpl, );
SOLVER_TYPE_ALIASES(FImpl, );
public:
// constructor
TA2AMesonField(const std::string name);
// destructor
virtual ~TA2AMesonField(void){};
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
// Arithmetic help. Move to Grid??
virtual void MesonField(Eigen::Tensor<ComplexD,5> &mat,
const LatticeFermion *lhs,
const LatticeFermion *rhs,
std::vector<Gamma::Algebra> gammas,
const std::vector<LatticeComplex > &mom,
int orthogdim,
double &t0,
double &t1,
double &t2,
double &t3);
};
MODULE_REGISTER(A2AMesonField, ARG(TA2AMesonField<FIMPL>), MContraction);
MODULE_REGISTER(ZA2AMesonField, ARG(TA2AMesonField<ZFIMPL>), MContraction);
/******************************************************************************
* TA2AMesonField implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TA2AMesonField<FImpl>::TA2AMesonField(const std::string name)
: Module<A2AMesonFieldPar>(name)
{
}
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TA2AMesonField<FImpl>::getInput(void)
{
std::vector<std::string> in = {par().v, par().w};
return in;
}
template <typename FImpl>
std::vector<std::string> TA2AMesonField<FImpl>::getOutput(void)
{
std::vector<std::string> out = {};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AMesonField<FImpl>::setup(void)
{}
//////////////////////////////////////////////////////////////////////////////////
// Cache blocked arithmetic routine
// Could move to Grid ???
//////////////////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AMesonField<FImpl>::MesonField(Eigen::Tensor<ComplexD,5> &mat,
const LatticeFermion *lhs_wi,
const LatticeFermion *rhs_vj,
std::vector<Gamma::Algebra> gammas,
const std::vector<LatticeComplex > &mom,
int orthogdim,
double &t0,
double &t1,
double &t2,
double &t3)
{
typedef typename FImpl::SiteSpinor vobj;
typedef typename vobj::scalar_object sobj;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
typedef iSpinMatrix<vector_type> SpinMatrix_v;
typedef iSpinMatrix<scalar_type> SpinMatrix_s;
int Lblock = mat.dimension(3);
int Rblock = mat.dimension(4);
GridBase *grid = lhs_wi[0]._grid;
const int Nd = grid->_ndimension;
const int Nsimd = grid->Nsimd();
int Nt = grid->GlobalDimensions()[orthogdim];
int Ngamma = gammas.size();
int Nmom = mom.size();
int fd=grid->_fdimensions[orthogdim];
int ld=grid->_ldimensions[orthogdim];
int rd=grid->_rdimensions[orthogdim];
// will locally sum vectors first
// sum across these down to scalars
// splitting the SIMD
int MFrvol = rd*Lblock*Rblock*Nmom;
int MFlvol = ld*Lblock*Rblock*Nmom;
Vector<SpinMatrix_v > lvSum(MFrvol);
parallel_for (int r = 0; r < MFrvol; r++)
{
lvSum[r] = zero;
}
Vector<SpinMatrix_s > lsSum(MFlvol);
parallel_for (int r = 0; r < MFlvol; r++){
lsSum[r]=scalar_type(0.0);
}
int e1= grid->_slice_nblock[orthogdim];
int e2= grid->_slice_block [orthogdim];
int stride=grid->_slice_stride[orthogdim];
t0-=usecond();
// Nested parallelism would be ok
// Wasting cores here. Test case r
parallel_for(int r=0;r<rd;r++)
{
int so=r*grid->_ostride[orthogdim]; // base offset for start of plane
for(int n=0;n<e1;n++)
for(int b=0;b<e2;b++)
{
int ss= so+n*stride+b;
for(int i=0;i<Lblock;i++)
{
auto left = conjugate(lhs_wi[i]._odata[ss]);
for(int j=0;j<Rblock;j++)
{
SpinMatrix_v vv;
auto right = rhs_vj[j]._odata[ss];
for(int s1=0;s1<Ns;s1++)
for(int s2=0;s2<Ns;s2++)
{
vv()(s1,s2)() = left()(s2)(0) * right()(s1)(0)
+ left()(s2)(1) * right()(s1)(1)
+ left()(s2)(2) * right()(s1)(2);
}
// After getting the sitewise product do the mom phase loop
int base = Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*r;
for ( int m=0;m<Nmom;m++)
{
int idx = m+base;
auto phase = mom[m]._odata[ss];
mac(&lvSum[idx],&vv,&phase);
}
}
}
}
}
t0+=usecond();
// Sum across simd lanes in the plane, breaking out orthog dir.
t1-=usecond();
parallel_for(int rt=0;rt<rd;rt++)
{
std::vector<int> icoor(Nd);
std::vector<SpinMatrix_s> extracted(Nsimd);
for(int i=0;i<Lblock;i++)
for(int j=0;j<Rblock;j++)
for(int m=0;m<Nmom;m++)
{
int ij_rdx = m+Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*rt;
extract(lvSum[ij_rdx],extracted);
for(int idx=0;idx<Nsimd;idx++)
{
grid->iCoorFromIindex(icoor,idx);
int ldx = rt+icoor[orthogdim]*rd;
int ij_ldx = m+Nmom*i+Nmom*Lblock*j+Nmom*Lblock*Rblock*ldx;
lsSum[ij_ldx]=lsSum[ij_ldx]+extracted[idx];
}
}
}
t1+=usecond();
assert(mat.dimension(0) == Nmom);
assert(mat.dimension(1) == Ngamma);
assert(mat.dimension(2) == Nt);
t2-=usecond();
// ld loop and local only??
int pd = grid->_processors[orthogdim];
int pc = grid->_processor_coor[orthogdim];
parallel_for_nest2(int lt=0;lt<ld;lt++)
{
for(int pt=0;pt<pd;pt++)
{
int t = lt + pt*ld;
if (pt == pc)
{
for(int i=0;i<Lblock;i++)
for(int j=0;j<Rblock;j++)
for(int m=0;m<Nmom;m++)
{
int ij_dx = m+Nmom*i + Nmom*Lblock * j + Nmom*Lblock * Rblock * lt;
for(int mu=0;mu<Ngamma;mu++)
{
// this is a bit slow
mat(m,mu,t,i,j) = trace(lsSum[ij_dx]*Gamma(gammas[mu]));
}
}
}
else
{
const scalar_type zz(0.0);
for(int i=0;i<Lblock;i++)
for(int j=0;j<Rblock;j++)
for(int mu=0;mu<Ngamma;mu++)
for(int m=0;m<Nmom;m++)
{
mat(m,mu,t,i,j) =zz;
}
}
}
}
t2+=usecond();
////////////////////////////////////////////////////////////////////
// This global sum is taking as much as 50% of time on 16 nodes
// Vector size is 7 x 16 x 32 x 16 x 16 x sizeof(complex) = 2MB - 60MB depending on volume
// Healthy size that should suffice
////////////////////////////////////////////////////////////////////
t3-=usecond();
grid->GlobalSumVector(&mat(0,0,0,0,0),Nmom*Ngamma*Nt*Lblock*Rblock);
t3+=usecond();
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TA2AMesonField<FImpl>::execute(void)
{
LOG(Message) << "Computing A2A meson field" << std::endl;
auto &v = envGet(std::vector<FermionField>, par().v);
auto &w = envGet(std::vector<FermionField>, par().w);
// 2+6+4+4 = 16 gammas
// Ordering defined here
std::vector<Gamma::Algebra> gammas ( {
Gamma::Algebra::Gamma5,
Gamma::Algebra::Identity,
Gamma::Algebra::GammaX,
Gamma::Algebra::GammaY,
Gamma::Algebra::GammaZ,
Gamma::Algebra::GammaT,
Gamma::Algebra::GammaXGamma5,
Gamma::Algebra::GammaYGamma5,
Gamma::Algebra::GammaZGamma5,
Gamma::Algebra::GammaTGamma5,
Gamma::Algebra::SigmaXY,
Gamma::Algebra::SigmaXZ,
Gamma::Algebra::SigmaXT,
Gamma::Algebra::SigmaYZ,
Gamma::Algebra::SigmaYT,
Gamma::Algebra::SigmaZT
});
///////////////////////////////////////////////
// Square assumption for now Nl = Nr = N
///////////////////////////////////////////////
int nt = env().getDim(Tp);
int nx = env().getDim(Xp);
int ny = env().getDim(Yp);
int nz = env().getDim(Zp);
int N_i = w.size();
int N_j = v.size();
int ngamma = gammas.size();
int schurBlock = par().schurBlock;
int cacheBlock = par().cacheBlock;
int nmom = par().Nmom;
std::vector<ComplexD> corr(nt,ComplexD(0.0));
///////////////////////////////////////////////
// Momentum setup
///////////////////////////////////////////////
GridBase *grid = env().getGrid();
std::vector<LatticeComplex> phases(nmom,grid);
for(int m=0;m<nmom;m++)
{
phases[m] = Complex(1.0); // All zero momentum for now
}
LOG(Message) << "MesonField size " << N_i << "x" << N_j << "x" << nt << std::endl;
//////////////////////////////////////////////////////////////////////////
// i,j is first loop over SchurBlock factors reusing 5D matrices
// ii,jj is second loop over cacheBlock factors for high perf contractoin
// iii,jjj are loops within cacheBlock
// Total index is sum of these i+ii+iii etc...
//////////////////////////////////////////////////////////////////////////
double flops = 0.0;
double bytes = 0.0;
double vol = nx*ny*nz*nt;
double t_schur=0;
double t_contr=0;
double t_int_0=0;
double t_int_1=0;
double t_int_2=0;
double t_int_3=0;
double t0 = usecond();
int NBlock_i = N_i/schurBlock + (((N_i % schurBlock) != 0) ? 1 : 0);
int NBlock_j = N_j/schurBlock + (((N_j % schurBlock) != 0) ? 1 : 0);
for(int i=0;i<N_i;i+=schurBlock) //loop over SchurBlocking to suppress 5D matrix overhead
for(int j=0;j<N_j;j+=schurBlock)
{
///////////////////////////////////////////////////////////////
// Get the W and V vectors for this schurBlock^2 set of terms
///////////////////////////////////////////////////////////////
int N_ii = MIN(N_i-i,schurBlock);
int N_jj = MIN(N_j-j,schurBlock);
t_schur-=usecond();
t_schur+=usecond();
LOG(Message) << "Meson field block "
<< j/schurBlock + NBlock_j*i/schurBlock + 1
<< "/" << NBlock_i*NBlock_j << " [" << i <<" .. "
<< i+N_ii-1 << ", " << j <<" .. " << j+N_jj-1 << "]"
<< std::endl;
///////////////////////////////////////////////////////////////
// Series of cache blocked chunks of the contractions within this SchurBlock
///////////////////////////////////////////////////////////////
for(int ii=0;ii<N_ii;ii+=cacheBlock)
for(int jj=0;jj<N_jj;jj+=cacheBlock)
{
int N_iii = MIN(N_ii-ii,cacheBlock);
int N_jjj = MIN(N_jj-jj,cacheBlock);
Eigen::Tensor<ComplexD,5> mesonFieldBlocked(nmom,ngamma,nt,N_iii,N_jjj);
t_contr-=usecond();
MesonField(mesonFieldBlocked, &w[i+ii], &v[j+jj], gammas, phases,Tp,
t_int_0,t_int_1,t_int_2,t_int_3);
t_contr+=usecond();
// flops for general N_c & N_s
flops += vol * ( 2 * 8.0 + 6.0 + 8.0*nmom) * N_iii*N_jjj*ngamma;
bytes += vol * (12.0 * sizeof(Complex) ) * N_iii*N_jjj
+ vol * ( 2.0 * sizeof(Complex) *nmom ) * N_iii*N_jjj* ngamma;
/////////////////////////////////////////////////////////////////////////
// Test: Build the pion correlator (two end)
// < PI_ij(t0) PI_ji (t0+t) >
/////////////////////////////////////////////////////////////////////////
parallel_for_nest2(int iii=0;iii< N_iii;iii++)
for(int jjj=0;jjj< N_jjj;jjj++)
{
int m=0; // first momentum
int g=0; // first gamma in above ordering is gamma5 for pion
for(int t0=0;t0<nt;t0++)
for(int t=0;t<nt;t++)
{
int tt = (t0+t)%nt;
corr[t] += mesonFieldBlocked(m,g,t0,iii,jjj)*mesonFieldBlocked(m,g,tt,jjj,iii);
}
}
///////////////////////////////////////////////////////////////
// Copy back to full meson field tensor
///////////////////////////////////////////////////////////////
// parallel_for_nest2(int iii=0;iii< N_iii;iii++)
// for(int jjj=0;jjj< N_jjj;jjj++)
// for(int m =0;m< nmom;m++)
// for(int g =0;g< ngamma;g++)
// for(int t =0;t< nt;t++)
// {
// mesonField(m,g,t,i+ii+iii,j+jj+jjj) = mesonFieldBlocked(m,g,t,iii,jjj);
// }
}
}
double nodes=grid->NodeCount();
double t1 = usecond();
LOG(Message) << "Contraction of MesonFields took "<<(t1-t0)/1.0e6<< " s" << std::endl;
LOG(Message) << " Schur " << (t_schur)/1.0e6 << " s" << std::endl;
LOG(Message) << " Contr " << (t_contr)/1.0e6 << " s" << std::endl;
LOG(Message) << " Intern0 " << (t_int_0)/1.0e6 << " s" << std::endl;
LOG(Message) << " Intern1 " << (t_int_1)/1.0e6 << " s" << std::endl;
LOG(Message) << " Intern2 " << (t_int_2)/1.0e6 << " s" << std::endl;
LOG(Message) << " Intern3 " << (t_int_3)/1.0e6 << " s" << std::endl;
double t_kernel = t_int_0 + t_int_1;
LOG(Message) << " Arith " << flops/(t_kernel)/1.0e3/nodes << " Gflop/s/ node " << std::endl;
LOG(Message) << " Arith " << bytes/(t_kernel)/1.0e3/nodes << " GB/s/node " << std::endl;
for(int t=0;t<nt;t++) corr[t] = corr[t]/ (double)nt;
for(int t=0;t<nt;t++) LOG(Message) << " " << t << " " << corr[t]<<std::endl;
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MContraction_A2AMesonField_hpp_