1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-15 02:05:37 +00:00
Grid/lib/qcd/spin/Dirac.h

629 lines
18 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/qcd/spin/Dirac.h
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_QCD_DIRAC_H
#define GRID_QCD_DIRAC_H
namespace Grid{
namespace QCD {
class Gamma {
public:
const int Ns=4;
enum GammaMatrix {
Identity,
GammaX,
GammaY,
GammaZ,
GammaT,
Gamma5,
MinusIdentity,
MinusGammaX,
MinusGammaY,
MinusGammaZ,
MinusGammaT,
MinusGamma5
// GammaXGamma5, // Rest are composite (willing to take hit for two calls sequentially)
// GammaYGamma5, // as they are less commonly used.
// GammaZGamma5,
// GammaTGamma5,
// SigmaXY,
// SigmaXZ,
// SigmaYZ,
// SigmaXT,
// SigmaYT,
// SigmaZT,
// MinusGammaXGamma5, easiest to form by composition
// MinusGammaYGamma5, as performance is not critical for these
// MinusGammaZGamma5,
// MinusGammaTGamma5,
// MinusSigmaXY,
// MinusSigmaXZ,
// MinusSigmaYZ,
// MinusSigmaXT,
// MinusSigmaYT,
// MinusSigmaZT
};
static GammaMatrix GammaMatrices[];
static const char *GammaMatrixNames[];
Gamma (GammaMatrix g) { _g=g; }
GammaMatrix _g;
};
// Make gamma products (Chroma convention)
SpinMatrix makeGammaProd(const unsigned int i);
/* Gx
* 0 0 0 i
* 0 0 i 0
* 0 -i 0 0
* -i 0 0 0
*/
// right multiplication makes sense for matrix args, not for vector since there is
// no concept of row versus columnar indices
template<class vtype> inline void rmultMinusGammaX(iMatrix<vtype,Ns> &ret,const iMatrix<vtype,Ns> &rhs){
for(int i=0;i<Ns;i++){
ret(i,0) = timesI(rhs(i,3));
ret(i,1) = timesI(rhs(i,2));
ret(i,2) = timesMinusI(rhs(i,1));
ret(i,3) = timesMinusI(rhs(i,0));
}
};
template<class vtype> inline void rmultGammaX(iMatrix<vtype,Ns> &ret, const iMatrix<vtype,Ns> &rhs){
for(int i=0;i<Ns;i++){
ret(i,0) = timesMinusI(rhs(i,3));
ret(i,1) = timesMinusI(rhs(i,2));
ret(i,2) = timesI(rhs(i,1));
ret(i,3) = timesI(rhs(i,0));
}
};
template<class vtype> inline void multGammaX(iMatrix<vtype,Ns> &ret, const iMatrix<vtype,Ns> &rhs){
for(int i=0;i<Ns;i++){
ret(0,i) = timesI(rhs(3,i));
ret(1,i) = timesI(rhs(2,i));
ret(2,i) = timesMinusI(rhs(1,i));
ret(3,i) = timesMinusI(rhs(0,i));
}
};
template<class vtype> inline void multMinusGammaX(iMatrix<vtype,Ns> &ret, const iMatrix<vtype,Ns> &rhs){
for(int i=0;i<Ns;i++){
ret(0,i) = timesMinusI(rhs(3,i));
ret(1,i) = timesMinusI(rhs(2,i));
ret(2,i) = timesI(rhs(1,i));
ret(3,i) = timesI(rhs(0,i));
}
};
template<class vtype> inline void multGammaX(iVector<vtype,Ns> &ret, const iVector<vtype,Ns> &rhs){
ret._internal[0] = timesI(rhs._internal[3]);
ret._internal[1] = timesI(rhs._internal[2]);
ret._internal[2] = timesMinusI(rhs._internal[1]);
ret._internal[3] = timesMinusI(rhs._internal[0]);
};
template<class vtype> inline void multMinusGammaX(iVector<vtype,Ns> &ret, const iVector<vtype,Ns> &rhs){
ret(0) = timesMinusI(rhs(3));
ret(1) = timesMinusI(rhs(2));
ret(2) = timesI(rhs(1));
ret(3) = timesI(rhs(0));
};
/*Gy
* 0 0 0 -1 [0] -+ [3]
* 0 0 1 0 [1] +- [2]
* 0 1 0 0
* -1 0 0 0
*/
template<class vtype> inline void rmultGammaY(iMatrix<vtype,Ns> &ret, const iMatrix<vtype,Ns> &rhs){
for(int i=0;i<Ns;i++){
ret(i,0) = -rhs(i,3);
ret(i,1) = rhs(i,2);
ret(i,2) = rhs(i,1);
ret(i,3) = -rhs(i,0);
}
};
template<class vtype> inline void rmultMinusGammaY(iMatrix<vtype,Ns> &ret, const iMatrix<vtype,Ns> &rhs){
for(int i=0;i<Ns;i++){
ret(i,0) = rhs(i,3);
ret(i,1) = -rhs(i,2);
ret(i,2) = -rhs(i,1);
ret(i,3) = rhs(i,0);
}
};
template<class vtype> inline void multGammaY(iMatrix<vtype,Ns> &ret, const iMatrix<vtype,Ns> &rhs){
for(int i=0;i<Ns;i++){
ret(0,i) = -rhs(3,i);
ret(1,i) = rhs(2,i);
ret(2,i) = rhs(1,i);
ret(3,i) = -rhs(0,i);
}
};
template<class vtype> inline void multMinusGammaY(iMatrix<vtype,Ns> &ret, const iMatrix<vtype,Ns> &rhs){
for(int i=0;i<Ns;i++){
ret(0,i) = rhs(3,i);
ret(1,i) = -rhs(2,i);
ret(2,i) = -rhs(1,i);
ret(3,i) = rhs(0,i);
}
};
template<class vtype> inline void multGammaY(iVector<vtype,Ns> &ret, const iVector<vtype,Ns> &rhs){
ret(0) = -rhs(3);
ret(1) = rhs(2);
ret(2) = rhs(1);
ret(3) = -rhs(0);
};
template<class vtype> inline void multMinusGammaY(iVector<vtype,Ns> &ret, const iVector<vtype,Ns> &rhs){
ret(0) = rhs(3);
ret(1) = -rhs(2);
ret(2) = -rhs(1);
ret(3) = rhs(0);
};
/*Gz
* 0 0 i 0 [0]+-i[2]
* 0 0 0 -i [1]-+i[3]
* -i 0 0 0
* 0 i 0 0
*/
template<class vtype> inline void rmultGammaZ(iMatrix<vtype,Ns> &ret, const iMatrix<vtype,Ns> &rhs){
for(int i=0;i<Ns;i++){
ret(i,0) = timesMinusI(rhs(i,2));
ret(i,1) = timesI(rhs(i,3));
ret(i,2) = timesI(rhs(i,0));
ret(i,3) = timesMinusI(rhs(i,1));
}
};
template<class vtype> inline void rmultMinusGammaZ(iMatrix<vtype,Ns> &ret, const iMatrix<vtype,Ns> &rhs){
for(int i=0;i<Ns;i++){
ret(i,0) = timesI(rhs(i,2));
ret(i,1) = timesMinusI(rhs(i,3));
ret(i,2) = timesMinusI(rhs(i,0));
ret(i,3) = timesI(rhs(i,1));
}
};
template<class vtype> inline void multGammaZ(iMatrix<vtype,Ns> &ret, const iMatrix<vtype,Ns> &rhs){
for(int i=0;i<Ns;i++){
ret(0,i) = timesI(rhs(2,i));
ret(1,i) =timesMinusI(rhs(3,i));
ret(2,i) =timesMinusI(rhs(0,i));
ret(3,i) = timesI(rhs(1,i));
}
};
template<class vtype> inline void multMinusGammaZ(iMatrix<vtype,Ns> &ret, const iMatrix<vtype,Ns> &rhs){
for(int i=0;i<Ns;i++){
ret(0,i) = timesMinusI(rhs(2,i));
ret(1,i) = timesI(rhs(3,i));
ret(2,i) = timesI(rhs(0,i));
ret(3,i) = timesMinusI(rhs(1,i));
}
};
template<class vtype> inline void multGammaZ(iVector<vtype,Ns> &ret, const iVector<vtype,Ns> &rhs){
ret(0) = timesI(rhs(2));
ret(1) =timesMinusI(rhs(3));
ret(2) =timesMinusI(rhs(0));
ret(3) = timesI(rhs(1));
};
template<class vtype> inline void multMinusGammaZ(iVector<vtype,Ns> &ret, const iVector<vtype,Ns> &rhs){
ret(0) = timesMinusI(rhs(2));
ret(1) = timesI(rhs(3));
ret(2) = timesI(rhs(0));
ret(3) = timesMinusI(rhs(1));
};
/*Gt
* 0 0 1 0 [0]+-[2]
* 0 0 0 1 [1]+-[3]
* 1 0 0 0
* 0 1 0 0
*/
template<class vtype> inline void rmultGammaT(iMatrix<vtype,Ns> &ret, const iMatrix<vtype,Ns> &rhs){
for(int i=0;i<Ns;i++){
ret(i,0) = rhs(i,2);
ret(i,1) = rhs(i,3);
ret(i,2) = rhs(i,0);
ret(i,3) = rhs(i,1);
}
};
template<class vtype> inline void rmultMinusGammaT(iMatrix<vtype,Ns> &ret, const iMatrix<vtype,Ns> &rhs){
for(int i=0;i<Ns;i++){
ret(i,0) =- rhs(i,2);
ret(i,1) =- rhs(i,3);
ret(i,2) =- rhs(i,0);
ret(i,3) =- rhs(i,1);
}
};
template<class vtype> inline void multGammaT(iMatrix<vtype,Ns> &ret, const iMatrix<vtype,Ns> &rhs){
for(int i=0;i<Ns;i++){
ret(0,i) = rhs(2,i);
ret(1,i) = rhs(3,i);
ret(2,i) = rhs(0,i);
ret(3,i) = rhs(1,i);
}
};
template<class vtype> inline void multMinusGammaT(iMatrix<vtype,Ns> &ret, const iMatrix<vtype,Ns> &rhs){
for(int i=0;i<Ns;i++){
ret(0,i) =-rhs(2,i);
ret(1,i) =-rhs(3,i);
ret(2,i) =-rhs(0,i);
ret(3,i) =-rhs(1,i);
}
};
template<class vtype> inline void multGammaT(iVector<vtype,Ns> &ret, const iVector<vtype,Ns> &rhs){
ret(0) = rhs(2);
ret(1) = rhs(3);
ret(2) = rhs(0);
ret(3) = rhs(1);
};
template<class vtype> inline void multMinusGammaT(iVector<vtype,Ns> &ret, const iVector<vtype,Ns> &rhs){
ret(0) =-rhs(2);
ret(1) =-rhs(3);
ret(2) =-rhs(0);
ret(3) =-rhs(1);
};
/*G5
* 1 0 0 0 [0]+-[2]
* 0 1 0 0 [1]+-[3]
* 0 0 -1 0
* 0 0 0 -1
*/
template<class vtype> inline void rmultGamma5(iMatrix<vtype,Ns> &ret, const iMatrix<vtype,Ns> &rhs){
for(int i=0;i<Ns;i++){
ret(i,0) = rhs(i,0);
ret(i,1) = rhs(i,1);
ret(i,2) =-rhs(i,2);
ret(i,3) =-rhs(i,3);
}
};
template<class vtype> inline void rmultMinusGamma5(iMatrix<vtype,Ns> &ret, const iMatrix<vtype,Ns> &rhs){
for(int i=0;i<Ns;i++){
ret(i,0) =-rhs(i,0);
ret(i,1) =-rhs(i,1);
ret(i,2) = rhs(i,2);
ret(i,3) = rhs(i,3);
}
};
template<class vtype> inline void multGamma5(iMatrix<vtype,Ns> &ret, const iMatrix<vtype,Ns> &rhs){
for(int i=0;i<Ns;i++){
ret(0,i) = rhs(0,i);
ret(1,i) = rhs(1,i);
ret(2,i) =-rhs(2,i);
ret(3,i) =-rhs(3,i);
}
};
template<class vtype> inline void multMinusGamma5(iMatrix<vtype,Ns> &ret, const iMatrix<vtype,Ns> &rhs){
for(int i=0;i<Ns;i++){
ret(0,i) =-rhs(0,i);
ret(1,i) =-rhs(1,i);
ret(2,i) = rhs(2,i);
ret(3,i) = rhs(3,i);
}
};
template<class vtype> inline void multGamma5(iVector<vtype,Ns> &ret, const iVector<vtype,Ns> &rhs){
ret(0) = rhs(0);
ret(1) = rhs(1);
ret(2) =-rhs(2);
ret(3) =-rhs(3);
};
template<class vtype> inline void multMinusGamma5(iVector<vtype,Ns> &ret, const iVector<vtype,Ns> &rhs){
ret(0) =-rhs(0);
ret(1) =-rhs(1);
ret(2) = rhs(2);
ret(3) = rhs(3);
};
#ifdef GRID_WARN_SUBOPTIMAL
#warning "Optimisation alert switch over to multGammaX early "
#endif
///////////////////////////////////////////////////////////////////////////////////////////////////
// Operator * : first case this is not a spin index, so recurse
///////////////////////////////////////////////////////////////////////////////////////////////////
// FIXME
//
// Optimisation; switch over to a "multGammaX(ret._internal,arg._internal)" style early and
// note that doing so from the lattice operator will avoid copy back and case switch overhead, as
// was done for the tensor math operator to remove operator * notation early
//
//left multiply
template<class vtype> inline auto operator * ( const Gamma &G,const iScalar<vtype> &arg) ->
typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type
{
iScalar<vtype> ret;
ret._internal=G*arg._internal;
return ret;
}
template<class vtype,int N> inline auto operator * ( const Gamma &G,const iVector<vtype,N> &arg) ->
typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type
{
iVector<vtype,N> ret;
for(int i=0;i<N;i++){
ret._internal[i]=G*arg._internal[i];
}
return ret;
}
template<class vtype,int N> inline auto operator * ( const Gamma &G,const iMatrix<vtype,N> &arg) ->
typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type
{
iMatrix<vtype,N> ret;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
ret._internal[i][j]=G*arg._internal[i][j];
}}
return ret;
}
//right multiply
template<class vtype> inline auto operator * (const iScalar<vtype> &arg, const Gamma &G) ->
typename std::enable_if<matchGridTensorIndex<iScalar<vtype>,SpinorIndex>::notvalue,iScalar<vtype> >::type
{
iScalar<vtype> ret;
ret._internal=arg._internal*G;
return ret;
}
template<class vtype,int N> inline auto operator * (const iVector<vtype,N> &arg, const Gamma &G) ->
typename std::enable_if<matchGridTensorIndex<iVector<vtype,N>,SpinorIndex>::notvalue,iVector<vtype,N> >::type
{
iVector<vtype,N> ret;
for(int i=0;i<N;i++){
ret._internal=arg._internal[i]*G;
}
return ret;
}
template<class vtype,int N> inline auto operator * (const iMatrix<vtype,N> &arg, const Gamma &G) ->
typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,N>,SpinorIndex>::notvalue,iMatrix<vtype,N> >::type
{
iMatrix<vtype,N> ret;
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
ret._internal[i][j]=arg._internal[i][j]*G;
}}
return ret;
}
////////////////////////////////////////////////////////
// When we hit the spin index this matches and we stop
////////////////////////////////////////////////////////
template<class vtype> inline auto operator * ( const Gamma &G,const iMatrix<vtype,Ns> &arg) ->
typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,Ns>,SpinorIndex>::value,iMatrix<vtype,Ns> >::type
{
iMatrix<vtype,Ns> ret;
switch (G._g) {
case Gamma::Identity:
ret = arg;
break;
case Gamma::MinusIdentity:
ret = -arg;
break;
case Gamma::GammaX:
multGammaX(ret,arg);
break;
case Gamma::MinusGammaX:
multMinusGammaX(ret,arg);
break;
case Gamma::GammaY:
multGammaY(ret,arg);
break;
case Gamma::MinusGammaY:
multMinusGammaY(ret,arg);
break;
case Gamma::GammaZ:
multGammaZ(ret,arg);
break;
case Gamma::MinusGammaZ:
multMinusGammaZ(ret,arg);
break;
case Gamma::GammaT:
multGammaT(ret,arg);
break;
case Gamma::MinusGammaT:
multMinusGammaT(ret,arg);
break;
case Gamma::Gamma5:
multGamma5(ret,arg);
break;
case Gamma::MinusGamma5:
multMinusGamma5(ret,arg);
break;
default:
assert(0);
break;
}
return ret;
}
// Could have used type trait for Matrix/vector and then an enable if to share code
template<class vtype> inline auto operator * ( const Gamma &G,const iVector<vtype,Ns> &arg) ->
typename std::enable_if<matchGridTensorIndex<iVector<vtype,Ns>,SpinorIndex>::value,iVector<vtype,Ns> >::type
{
iVector<vtype,Ns> ret;
switch (G._g) {
case Gamma::Identity:
ret = arg;
break;
case Gamma::MinusIdentity:
ret = -arg;
break;
case Gamma::GammaX:
multGammaX(ret,arg);
break;
case Gamma::MinusGammaX:
multMinusGammaX(ret,arg);
break;
case Gamma::GammaY:
multGammaY(ret,arg);
break;
case Gamma::MinusGammaY:
multMinusGammaY(ret,arg);
break;
case Gamma::GammaZ:
multGammaZ(ret,arg);
break;
case Gamma::MinusGammaZ:
multMinusGammaZ(ret,arg);
break;
case Gamma::GammaT:
multGammaT(ret,arg);
break;
case Gamma::MinusGammaT:
multMinusGammaT(ret,arg);
break;
case Gamma::Gamma5:
multGamma5(ret,arg);
break;
case Gamma::MinusGamma5:
multMinusGamma5(ret,arg);
break;
default:
assert(0);
break;
}
return ret;
}
template<class vtype> inline auto operator * (const iMatrix<vtype,Ns> &arg, const Gamma &G) ->
typename std::enable_if<matchGridTensorIndex<iMatrix<vtype,Ns>,SpinorIndex>::value,iMatrix<vtype,Ns> >::type
{
iMatrix<vtype,Ns> ret;
switch (G._g) {
case Gamma::Identity:
ret = arg;
break;
case Gamma::MinusIdentity:
ret = -arg;
break;
case Gamma::GammaX:
rmultGammaX(ret,arg);
break;
case Gamma::MinusGammaX:
rmultMinusGammaX(ret,arg);
break;
case Gamma::GammaY:
rmultGammaY(ret,arg);
break;
case Gamma::MinusGammaY:
rmultMinusGammaY(ret,arg);
break;
case Gamma::GammaZ:
rmultGammaZ(ret,arg);
break;
case Gamma::MinusGammaZ:
rmultMinusGammaZ(ret,arg);
break;
case Gamma::GammaT:
rmultGammaT(ret,arg);
break;
case Gamma::MinusGammaT:
rmultMinusGammaT(ret,arg);
break;
case Gamma::Gamma5:
rmultGamma5(ret,arg);
break;
case Gamma::MinusGamma5:
rmultMinusGamma5(ret,arg);
break;
default:
assert(0);
break;
}
return ret;
}
/* Output from test
./Grid_gamma
Identity((1,0),(0,0),(0,0),(0,0))
((0,0),(1,0),(0,0),(0,0))
((0,0),(0,0),(1,0),(0,0))
((0,0),(0,0),(0,0),(1,0)) OK
GammaX ((0,0),(0,0),(0,0),(0,1))
((0,0),(0,0),(0,1),(0,0))
((0,0),(0,-1),(0,0),(0,0))
((0,-1),(0,0),(0,0),(0,0)) OK
* Gx
* 0 0 0 i
* 0 0 i 0
* 0 -i 0 0
* -i 0 0 0
GammaY ((-0,-0),(-0,-0),(-0,-0),(-1,-0))
((0,0),(0,0),(1,0),(0,0))
((0,0),(1,0),(0,0),(0,0)) OK
((-1,-0),(-0,-0),(-0,-0),(-0,-0))
*Gy
* 0 0 0 -1 [0] -+ [3]
* 0 0 1 0 [1] +- [2]
* 0 1 0 0
* -1 0 0 0
GammaZ ((0,0),(0,0),(0,1),(0,0))
((0,0),(0,0),(0,0),(0,-1))
((0,-1),(0,0),(0,0),(0,0))
((0,0),(0,1),(0,0),(0,0)) OK
* 0 0 i 0 [0]+-i[2]
* 0 0 0 -i [1]-+i[3]
* -i 0 0 0
* 0 i 0 0
GammaT ((0,0),(0,0),(1,0),(0,0))
((0,0),(0,0),(0,0),(1,0)) OK
((1,0),(0,0),(0,0),(0,0))
((0,0),(1,0),(0,0),(0,0))
* 0 0 1 0 [0]+-[2]
* 0 0 0 1 [1]+-[3]
* 1 0 0 0
* 0 1 0 0
Gamma5 ((1,0),(0,0),(0,0),(0,0))
((0,0),(1,0),(0,0),(0,0))
((-0,-0),(-0,-0),(-1,-0),(-0,-0))
((-0,-0),(-0,-0),(-0,-0),(-1,-0))
* 1 0 0 0 [0]+-[2]
* 0 1 0 0 [1]+-[3] OK
* 0 0 -1 0
* 0 0 0 -1
*/
} //namespace QCD
} // Grid
#endif