mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 15:55:37 +00:00
328 lines
10 KiB
C++
328 lines
10 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: ./lib/qcd/action/fermion/WilsonCloverFermion.cc
|
|
|
|
Copyright (C) 2017
|
|
|
|
Author: paboyle <paboyle@ph.ed.ac.uk>
|
|
Author: Guido Cossu <guido.cossu@ed.ac.uk>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
#include <Grid/Grid.h>
|
|
#include <Grid/Eigen/Dense>
|
|
#include <Grid/qcd/spin/Dirac.h>
|
|
|
|
namespace Grid
|
|
{
|
|
namespace QCD
|
|
{
|
|
|
|
// *NOT* EO
|
|
template <class Impl>
|
|
RealD WilsonCloverFermion<Impl>::M(const FermionField &in, FermionField &out)
|
|
{
|
|
FermionField temp(out._grid);
|
|
|
|
// Wilson term
|
|
out.checkerboard = in.checkerboard;
|
|
this->Dhop(in, out, DaggerNo);
|
|
|
|
// Clover term
|
|
Mooee(in, temp);
|
|
|
|
out += temp;
|
|
return norm2(out);
|
|
}
|
|
|
|
template <class Impl>
|
|
RealD WilsonCloverFermion<Impl>::Mdag(const FermionField &in, FermionField &out)
|
|
{
|
|
FermionField temp(out._grid);
|
|
|
|
// Wilson term
|
|
out.checkerboard = in.checkerboard;
|
|
this->Dhop(in, out, DaggerYes);
|
|
|
|
// Clover term
|
|
MooeeDag(in, temp);
|
|
|
|
out += temp;
|
|
return norm2(out);
|
|
}
|
|
|
|
template <class Impl>
|
|
void WilsonCloverFermion<Impl>::ImportGauge(const GaugeField &_Umu)
|
|
{
|
|
WilsonFermion<Impl>::ImportGauge(_Umu);
|
|
GridBase *grid = _Umu._grid;
|
|
typename Impl::GaugeLinkField Bx(grid), By(grid), Bz(grid), Ex(grid), Ey(grid), Ez(grid);
|
|
|
|
// Compute the field strength terms mu>nu
|
|
WilsonLoops<Impl>::FieldStrength(Bx, _Umu, Zdir, Ydir);
|
|
WilsonLoops<Impl>::FieldStrength(By, _Umu, Zdir, Xdir);
|
|
WilsonLoops<Impl>::FieldStrength(Bz, _Umu, Ydir, Xdir);
|
|
WilsonLoops<Impl>::FieldStrength(Ex, _Umu, Tdir, Xdir);
|
|
WilsonLoops<Impl>::FieldStrength(Ey, _Umu, Tdir, Ydir);
|
|
WilsonLoops<Impl>::FieldStrength(Ez, _Umu, Tdir, Zdir);
|
|
|
|
// Compute the Clover Operator acting on Colour and Spin
|
|
CloverTerm = fillCloverYZ(Bx);
|
|
CloverTerm += fillCloverXZ(By);
|
|
CloverTerm += fillCloverXY(Bz);
|
|
CloverTerm += fillCloverXT(Ex);
|
|
CloverTerm += fillCloverYT(Ey);
|
|
CloverTerm += fillCloverZT(Ez);
|
|
CloverTerm *= (0.5) * csw;
|
|
CloverTerm += (4.0 + this->mass);
|
|
|
|
int lvol = _Umu._grid->lSites();
|
|
int DimRep = Impl::Dimension;
|
|
|
|
Eigen::MatrixXcd EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
|
|
Eigen::MatrixXcd EigenInvCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
|
|
|
|
std::vector<int> lcoor;
|
|
typename SiteCloverType::scalar_object Qx = zero, Qxinv = zero;
|
|
|
|
for (int site = 0; site < lvol; site++)
|
|
{
|
|
grid->LocalIndexToLocalCoor(site, lcoor);
|
|
EigenCloverOp = Eigen::MatrixXcd::Zero(Ns * DimRep, Ns * DimRep);
|
|
peekLocalSite(Qx, CloverTerm, lcoor);
|
|
Qxinv = zero;
|
|
//if (csw!=0){
|
|
for (int j = 0; j < Ns; j++)
|
|
for (int k = 0; k < Ns; k++)
|
|
for (int a = 0; a < DimRep; a++)
|
|
for (int b = 0; b < DimRep; b++)
|
|
EigenCloverOp(a + j * DimRep, b + k * DimRep) = Qx()(j, k)(a, b);
|
|
// if (site==0) std::cout << "site =" << site << "\n" << EigenCloverOp << std::endl;
|
|
|
|
EigenInvCloverOp = EigenCloverOp.inverse();
|
|
//std::cout << EigenInvCloverOp << std::endl;
|
|
for (int j = 0; j < Ns; j++)
|
|
for (int k = 0; k < Ns; k++)
|
|
for (int a = 0; a < DimRep; a++)
|
|
for (int b = 0; b < DimRep; b++)
|
|
Qxinv()(j, k)(a, b) = EigenInvCloverOp(a + j * DimRep, b + k * DimRep);
|
|
// if (site==0) std::cout << "site =" << site << "\n" << EigenInvCloverOp << std::endl;
|
|
// }
|
|
pokeLocalSite(Qxinv, CloverTermInv, lcoor);
|
|
}
|
|
|
|
// Separate the even and odd parts
|
|
pickCheckerboard(Even, CloverTermEven, CloverTerm);
|
|
pickCheckerboard(Odd, CloverTermOdd, CloverTerm);
|
|
|
|
pickCheckerboard(Even, CloverTermDagEven, adj(CloverTerm));
|
|
pickCheckerboard(Odd, CloverTermDagOdd, adj(CloverTerm));
|
|
|
|
pickCheckerboard(Even, CloverTermInvEven, CloverTermInv);
|
|
pickCheckerboard(Odd, CloverTermInvOdd, CloverTermInv);
|
|
|
|
pickCheckerboard(Even, CloverTermInvDagEven, adj(CloverTermInv));
|
|
pickCheckerboard(Odd, CloverTermInvDagOdd, adj(CloverTermInv));
|
|
}
|
|
|
|
template <class Impl>
|
|
void WilsonCloverFermion<Impl>::Mooee(const FermionField &in, FermionField &out)
|
|
{
|
|
conformable(in, out);
|
|
this->MooeeInternal(in, out, DaggerNo, InverseNo);
|
|
}
|
|
|
|
template <class Impl>
|
|
void WilsonCloverFermion<Impl>::MooeeDag(const FermionField &in, FermionField &out)
|
|
{
|
|
this->MooeeInternal(in, out, DaggerYes, InverseNo);
|
|
}
|
|
|
|
template <class Impl>
|
|
void WilsonCloverFermion<Impl>::MooeeInv(const FermionField &in, FermionField &out)
|
|
{
|
|
conformable(in,out);
|
|
this->MooeeInternal(in, out, DaggerNo, InverseYes);
|
|
}
|
|
|
|
template <class Impl>
|
|
void WilsonCloverFermion<Impl>::MooeeInvDag(const FermionField &in, FermionField &out)
|
|
{
|
|
conformable(in,out);
|
|
this->MooeeInternal(in, out, DaggerYes, InverseYes);
|
|
}
|
|
|
|
template <class Impl>
|
|
void WilsonCloverFermion<Impl>::MooeeInternal(const FermionField &in, FermionField &out, int dag, int inv)
|
|
{
|
|
out.checkerboard = in.checkerboard;
|
|
CloverFieldType *Clover;
|
|
assert(in.checkerboard == Odd || in.checkerboard == Even);
|
|
|
|
if (dag)
|
|
{
|
|
if (in._grid->_isCheckerBoarded)
|
|
{
|
|
if (in.checkerboard == Odd)
|
|
{
|
|
Clover = (inv) ? &CloverTermInvDagOdd : &CloverTermDagOdd;
|
|
}
|
|
else
|
|
{
|
|
Clover = (inv) ? &CloverTermInvDagEven : &CloverTermDagEven;
|
|
}
|
|
out = *Clover * in;
|
|
}
|
|
else
|
|
{
|
|
Clover = (inv) ? &CloverTermInv : &CloverTerm;
|
|
out = adj(*Clover) * in;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (in._grid->_isCheckerBoarded)
|
|
{
|
|
|
|
if (in.checkerboard == Odd)
|
|
{
|
|
// std::cout << "Calling clover term Odd" << std::endl;
|
|
Clover = (inv) ? &CloverTermInvOdd : &CloverTermOdd;
|
|
}
|
|
else
|
|
{
|
|
// std::cout << "Calling clover term Even" << std::endl;
|
|
Clover = (inv) ? &CloverTermInvEven : &CloverTermEven;
|
|
}
|
|
out = *Clover * in;
|
|
// std::cout << GridLogMessage << "*Clover.checkerboard " << (*Clover).checkerboard << std::endl;
|
|
}
|
|
else
|
|
{
|
|
Clover = (inv) ? &CloverTermInv : &CloverTerm;
|
|
out = *Clover * in;
|
|
}
|
|
}
|
|
|
|
} // MooeeInternal
|
|
|
|
|
|
// Derivative parts
|
|
template <class Impl>
|
|
void WilsonCloverFermion<Impl>::MooDeriv(GaugeField &mat, const FermionField &X, const FermionField &Y, int dag)
|
|
{
|
|
|
|
GridBase *grid = mat._grid;
|
|
|
|
//GaugeLinkField Lambdaodd(grid), Lambdaeven(grid), tmp(grid);
|
|
//Lambdaodd = zero; //Yodd*dag(Xodd)+Xodd*dag(Yodd); // I have to peek spin and decide the color structure
|
|
//Lambdaeven = zero; //Teven*dag(Xeven)+Xeven*dag(Yeven) + 2*(Dee^-1)
|
|
|
|
GaugeLinkField Lambda(grid), tmp(grid);
|
|
Lambda = zero;
|
|
|
|
conformable(mat._grid, X._grid);
|
|
conformable(Y._grid, X._grid);
|
|
|
|
std::vector<GaugeLinkField> C1p(Nd, grid), C2p(Nd, grid), C3p(Nd, grid), C4p(Nd, grid);
|
|
std::vector<GaugeLinkField> C1m(Nd, grid), C2m(Nd, grid), C3m(Nd, grid), C4m(Nd, grid);
|
|
std::vector<GaugeLinkField> U(Nd, mat._grid);
|
|
|
|
for (int mu = 0; mu < Nd; mu++)
|
|
{
|
|
U[mu] = PeekIndex<LorentzIndex>(mat, mu);
|
|
C1p[mu] = zero;
|
|
C2p[mu] = zero;
|
|
C3p[mu] = zero;
|
|
C4p[mu] = zero;
|
|
C1m[mu] = zero;
|
|
C2m[mu] = zero;
|
|
C3m[mu] = zero;
|
|
C4m[mu] = zero;
|
|
}
|
|
|
|
/*
|
|
PARALLEL_FOR_LOOP
|
|
for (int i = 0; i < CloverTerm._grid->oSites(); i++)
|
|
{
|
|
T._odata[i]()(0, 1) = timesMinusI(F._odata[i]()());
|
|
T._odata[i]()(1, 0) = timesMinusI(F._odata[i]()());
|
|
T._odata[i]()(2, 3) = timesMinusI(F._odata[i]()());
|
|
T._odata[i]()(3, 2) = timesMinusI(F._odata[i]()());
|
|
}
|
|
*/
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
{ //spin
|
|
for (int j = 0; j < 4; j++)
|
|
{ //spin
|
|
|
|
for (int mu = 0; mu < 4; mu++)
|
|
{ //color
|
|
for (int nu = 0; nu < 4; nu++)
|
|
{ //color
|
|
|
|
// insertion in upper staple
|
|
tmp = Lambda * U[nu];
|
|
C1p[mu] += Impl::ShiftStaple(Impl::CovShiftForward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
|
|
|
|
tmp = Lambda * U[mu];
|
|
C2p[mu] += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(tmp, mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu);
|
|
|
|
tmp = Impl::CovShiftIdentityForward(Lambda, nu) * U[nu];
|
|
C3p[mu] += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(tmp, nu))), mu);
|
|
|
|
tmp = Lambda;
|
|
C4p[mu] += Impl::ShiftStaple(Impl::CovShiftForward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, Impl::CovShiftIdentityBackward(U[nu], nu))), mu) * tmp;
|
|
|
|
// insertion in lower staple
|
|
tmp = Lambda * U[nu];
|
|
C1m[mu] += Impl::ShiftStaple(Impl::CovShiftBackward(tmp, nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu);
|
|
|
|
tmp = Lambda * U[mu];
|
|
C2m[mu] += Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(tmp, mu, U[nu])), mu);
|
|
|
|
tmp = Lambda * U[nu];
|
|
C3m[mu] += Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, tmp)), mu);
|
|
|
|
tmp = Lambda;
|
|
C4m[mu] += Impl::ShiftStaple(Impl::CovShiftBackward(U[nu], nu, Impl::CovShiftBackward(U[mu], mu, U[nu])), mu) * tmp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//Still implementing. Have to be tested, and understood how to project EO
|
|
}
|
|
|
|
// Derivative parts
|
|
template <class Impl>
|
|
void WilsonCloverFermion<Impl>::MeeDeriv(GaugeField &mat, const FermionField &U, const FermionField &V, int dag)
|
|
{
|
|
assert(0); // not implemented yet
|
|
}
|
|
|
|
FermOpTemplateInstantiate(WilsonCloverFermion); // now only for the fundamental representation
|
|
//AdjointFermOpTemplateInstantiate(WilsonCloverFermion);
|
|
//TwoIndexFermOpTemplateInstantiate(WilsonCloverFermion);
|
|
//GparityFermOpTemplateInstantiate(WilsonCloverFermion);
|
|
}
|
|
}
|