mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-15 02:05:37 +00:00
3f00b8f6c7
Remove hand-coded reference to pi - switch to <math.h> definition
319 lines
13 KiB
C++
319 lines
13 KiB
C++
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: Hadrons/Modules/MDistil/LapEvec.hpp
|
|
|
|
Copyright (C) 2019
|
|
|
|
Author: Felix Erben <ferben@ed.ac.uk>
|
|
Author: Michael Marshall <Michael.Marshall@ed.ac.uk>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
|
|
#ifndef Hadrons_MDistil_LapEvec_hpp_
|
|
#define Hadrons_MDistil_LapEvec_hpp_
|
|
|
|
#include <Hadrons/Modules/MDistil/Distil.hpp>
|
|
|
|
BEGIN_HADRONS_NAMESPACE
|
|
BEGIN_MODULE_NAMESPACE(MDistil)
|
|
|
|
/******************************************************************************
|
|
|
|
Laplacian eigenvectors - parameters
|
|
|
|
Computes the eigenvectors of the 3D-Laplacian, built from stout-smeared
|
|
gauge links with the specified number of steps and smearing parameter rho.
|
|
The smearing is only applied to the spatial components of the gauge field,
|
|
i.e. rho_{4i} = rho_{i4} = rho_{44} = 0.
|
|
|
|
Chebyshev-preconditioning is needed for convergence of the nvec lowest
|
|
eigenvectors.
|
|
|
|
******************************************************************************/
|
|
|
|
struct StoutParameters: Serializable {
|
|
GRID_SERIALIZABLE_CLASS_MEMBERS(StoutParameters,
|
|
int, steps,
|
|
double, rho)
|
|
StoutParameters() = default;
|
|
template <class ReaderClass> StoutParameters(Reader<ReaderClass>& Reader){read(Reader,"StoutSmearing",*this);}
|
|
};
|
|
|
|
struct ChebyshevParameters: Serializable {
|
|
GRID_SERIALIZABLE_CLASS_MEMBERS(ChebyshevParameters,
|
|
int, PolyOrder,
|
|
double, alpha,
|
|
double, beta)
|
|
ChebyshevParameters() = default;
|
|
template <class ReaderClass> ChebyshevParameters(Reader<ReaderClass>& Reader){read(Reader,"Chebyshev",*this);}
|
|
};
|
|
|
|
struct LanczosParameters: Serializable {
|
|
GRID_SERIALIZABLE_CLASS_MEMBERS(LanczosParameters,
|
|
int, Nvec,
|
|
int, Nk,
|
|
int, Np,
|
|
int, MaxIt,
|
|
double, resid,
|
|
int, IRLLog)
|
|
LanczosParameters() = default;
|
|
template <class ReaderClass> LanczosParameters(Reader<ReaderClass>& Reader){read(Reader,"Lanczos",*this);}
|
|
};
|
|
|
|
// These are the actual parameters passed to the module during construction
|
|
|
|
struct LapEvecPar: Serializable {
|
|
GRID_SERIALIZABLE_CLASS_MEMBERS(LapEvecPar
|
|
,std::string, gauge
|
|
,StoutParameters, Stout
|
|
,ChebyshevParameters, Cheby
|
|
,LanczosParameters, Lanczos)
|
|
};
|
|
|
|
/******************************************************************************
|
|
|
|
Laplacian eigenvectors - Module (class) definition
|
|
|
|
******************************************************************************/
|
|
|
|
template <typename GImpl>
|
|
class TLapEvec: public Module<LapEvecPar>
|
|
{
|
|
public:
|
|
GAUGE_TYPE_ALIASES(GImpl,);
|
|
// constructor
|
|
TLapEvec(const std::string name);
|
|
// destructor
|
|
virtual ~TLapEvec(void);
|
|
// dependency relation
|
|
virtual std::vector<std::string> getInput(void);
|
|
virtual std::vector<std::string> getOutput(void);
|
|
// setup
|
|
virtual void setup(void);
|
|
// execution
|
|
virtual void execute(void);
|
|
protected:
|
|
std::unique_ptr<GridCartesian> gridLD; // Owned by me, so I must delete it
|
|
};
|
|
|
|
MODULE_REGISTER_TMP(LapEvec, TLapEvec<GIMPL>, MDistil);
|
|
|
|
/******************************************************************************
|
|
TLapEvec implementation
|
|
******************************************************************************/
|
|
|
|
// constructor /////////////////////////////////////////////////////////////////
|
|
template <typename GImpl>
|
|
TLapEvec<GImpl>::TLapEvec(const std::string name) : Module<LapEvecPar>(name) {}
|
|
|
|
// dependencies/products ///////////////////////////////////////////////////////
|
|
template <typename GImpl>
|
|
std::vector<std::string> TLapEvec<GImpl>::getInput(void)
|
|
{
|
|
return std::vector<std::string>{par().gauge};
|
|
}
|
|
|
|
template <typename GImpl>
|
|
std::vector<std::string> TLapEvec<GImpl>::getOutput(void)
|
|
{
|
|
return {getName()}; // This is the higher dimensional eigenpack
|
|
}
|
|
|
|
// setup ///////////////////////////////////////////////////////////////////////
|
|
template <typename GImpl>
|
|
void TLapEvec<GImpl>::setup(void)
|
|
{
|
|
GridCartesian * gridHD = env().getGrid();
|
|
gridLD.reset(MakeLowerDimGrid(gridHD));
|
|
const int Ntlocal{gridHD->LocalDimensions()[Tdir]};
|
|
// Temporaries
|
|
envTmpLat(GaugeField, "Umu_stout");
|
|
envTmpLat(GaugeField, "Umu_smear");
|
|
envTmp(LatticeGaugeField, "UmuNoTime",1,LatticeGaugeField(gridLD.get()));
|
|
envTmp(LatticeColourVector, "src",1,LatticeColourVector(gridLD.get()));
|
|
envTmp(std::vector<LapEvecs>, "eig",1,std::vector<LapEvecs>(Ntlocal));
|
|
// Output objects
|
|
envCreate(LapEvecs, getName(), 1, par().Lanczos.Nvec, gridHD);
|
|
}
|
|
|
|
/*************************************************************************************
|
|
|
|
-Grad^2 (Peardon, 2009, pg 2, equation 3, https://arxiv.org/abs/0905.2160)
|
|
Field Type of field the operator will be applied to
|
|
GaugeField Gauge field the operator will smear using
|
|
|
|
*************************************************************************************/
|
|
|
|
template<typename Field, typename GaugeField=LatticeGaugeField>
|
|
class Laplacian3D : public LinearOperatorBase<Field>, public LinearFunction<Field> {
|
|
typedef typename GaugeField::vector_type vCoeff_t;
|
|
public:
|
|
int nd; // number of spatial dimensions
|
|
std::vector<Lattice<iColourMatrix<vCoeff_t> > > U;
|
|
// Construct this operator given a gauge field and the number of dimensions it should act on
|
|
Laplacian3D( GaugeField& gf, int dimSpatial = Tdir ) : nd{dimSpatial}
|
|
{
|
|
assert(dimSpatial>=1);
|
|
for (int mu = 0 ; mu < nd ; mu++)
|
|
U.push_back(PeekIndex<LorentzIndex>(gf,mu));
|
|
}
|
|
|
|
// Apply this operator to "in", return result in "out"
|
|
void operator()(const Field& in, Field& out) {
|
|
assert( nd <= in.Grid()->Nd() );
|
|
conformable( in, out );
|
|
out = ( ( Real ) ( 2 * nd ) ) * in;
|
|
Field _tmp(in.Grid());
|
|
typedef typename GaugeField::vector_type vCoeff_t;
|
|
for (int mu = 0 ; mu < nd ; mu++)
|
|
{
|
|
out -= U[mu] * Cshift( in, mu, 1);
|
|
_tmp = adj( U[mu] ) * in;
|
|
out -= Cshift(_tmp,mu,-1);
|
|
}
|
|
}
|
|
|
|
void OpDiag (const Field &in, Field &out) { assert(0); };
|
|
void OpDir (const Field &in, Field &out,int dir,int disp) { assert(0); };
|
|
void Op (const Field &in, Field &out) { assert(0); };
|
|
void AdjOp (const Field &in, Field &out) { assert(0); };
|
|
void HermOpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2) { assert(0); };
|
|
void HermOp(const Field &in, Field &out) { operator()(in,out); };
|
|
};
|
|
|
|
template<typename Field>
|
|
class Laplacian3DHerm : public LinearFunction<Field> {
|
|
public:
|
|
OperatorFunction<Field> & _poly;
|
|
LinearOperatorBase<Field> &_Linop;
|
|
Laplacian3DHerm(OperatorFunction<Field> & poly,LinearOperatorBase<Field>& linop)
|
|
: _poly{poly}, _Linop{linop} {}
|
|
void operator()(const Field& in, Field& out)
|
|
{
|
|
_poly(_Linop,in,out);
|
|
}
|
|
};
|
|
|
|
/******************************************************************************
|
|
Calculate low-mode eigenvalues of the Laplacian
|
|
******************************************************************************/
|
|
|
|
// execution ///////////////////////////////////////////////////////////////////
|
|
template <typename GImpl>
|
|
void TLapEvec<GImpl>::execute(void)
|
|
{
|
|
const ChebyshevParameters &ChebPar{par().Cheby};
|
|
const LanczosParameters &LPar{par().Lanczos};
|
|
|
|
// Disable IRL logging if requested
|
|
LOG(Message) << "IRLLog=" << LPar.IRLLog << std::endl;
|
|
const int PreviousIRLLogState{GridLogIRL.isActive()};
|
|
GridLogIRL.Active( LPar.IRLLog == 0 ? 0 : 1 );
|
|
|
|
// Stout smearing
|
|
envGetTmp(GaugeField, Umu_smear);
|
|
Umu_smear = envGet(GaugeField, par().gauge); // The smeared field starts off as the Gauge field
|
|
LOG(Message) << "Initial plaquette: " << WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu_smear) << std::endl;
|
|
const StoutParameters &Stout{par().Stout};
|
|
if( Stout.steps )
|
|
{
|
|
envGetTmp(GaugeField, Umu_stout);
|
|
Smear_Stout<PeriodicGimplR> LS(Stout.rho, Tdir); // spatial smearing only
|
|
for (int i = 0; i < Stout.steps; i++) {
|
|
LS.smear(Umu_stout, Umu_smear);
|
|
Umu_smear = Umu_stout;
|
|
}
|
|
LOG(Message) << "Smeared plaquette: " << WilsonLoops<PeriodicGimplR>::avgPlaquette(Umu_smear) << std::endl;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// Invert nabla operator separately on each time-slice
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
auto & eig4d = envGet(LapEvecs, getName() );
|
|
envGetTmp(std::vector<LapEvecs>, eig); // Eigenpack for each timeslice
|
|
envGetTmp(LatticeGaugeField, UmuNoTime); // Gauge field without time dimension
|
|
envGetTmp(LatticeColourVector, src);
|
|
GridCartesian * gridHD = env().getGrid();
|
|
const int Ntlocal{gridHD->LocalDimensions()[Tdir]};
|
|
const int Ntfirst{gridHD->LocalStarts()[Tdir]};
|
|
uint32_t ConvergenceErrors{0};
|
|
for (int t = 0; t < Ntlocal; t++ )
|
|
{
|
|
LOG(Message) << "------------------------------------------------------------" << std::endl;
|
|
LOG(Message) << " Compute eigenpack, local timeslice = " << t << " / " << Ntlocal << std::endl;
|
|
LOG(Message) << "------------------------------------------------------------" << std::endl;
|
|
eig[t].resize(LPar.Nk+LPar.Np,gridLD.get());
|
|
|
|
// Construct smearing operator
|
|
ExtractSliceLocal(UmuNoTime,Umu_smear,0,t,Tdir); // switch to 3d/4d objects
|
|
Laplacian3D<LatticeColourVector> Nabla(UmuNoTime);
|
|
LOG(Message) << "Chebyshev preconditioning to order " << ChebPar.PolyOrder
|
|
<< " with parameters (alpha,beta) = (" << ChebPar.alpha << "," << ChebPar.beta << ")" << std::endl;
|
|
Chebyshev<LatticeColourVector> Cheb(ChebPar.alpha,ChebPar.beta,ChebPar.PolyOrder);
|
|
|
|
// Construct source vector according to Test_dwf_compressed_lanczos.cc
|
|
src = 11.0; // NB: This is a dummy parameter and just needs to be non-zero
|
|
RealD nn = norm2(src);
|
|
nn = Grid::sqrt(nn);
|
|
src = src * (1.0/nn);
|
|
|
|
Laplacian3DHerm<LatticeColourVector> NablaCheby(Cheb,Nabla);
|
|
ImplicitlyRestartedLanczos<LatticeColourVector>
|
|
IRL(NablaCheby,Nabla,LPar.Nvec,LPar.Nk,LPar.Nk+LPar.Np,LPar.resid,LPar.MaxIt);
|
|
int Nconv = 0;
|
|
IRL.calc(eig[t].eval,eig[t].evec,src,Nconv);
|
|
if (Nconv < LPar.Nvec)
|
|
{
|
|
// NB: Can't assert here since we are processing local slices - i.e. not all nodes would assert
|
|
ConvergenceErrors = 1;
|
|
LOG(Error) << "MDistil::LapEvec : Not enough eigenvectors converged. If this occurs in practice, we should modify the eigensolver to iterate once more to ensure the second convergence test does not take us below the requested number of eigenvectors" << std::endl;
|
|
}
|
|
if( Nconv != LPar.Nvec )
|
|
eig[t].resize(LPar.Nvec, gridLD.get());
|
|
RotateEigen( eig[t].evec ); // Rotate the eigenvectors into our phase convention
|
|
|
|
for (int i=0;i<LPar.Nvec;i++){
|
|
InsertSliceLocal(eig[t].evec[i],eig4d.evec[i],0,t,Tdir);
|
|
if(t==0 && Ntfirst==0)
|
|
eig4d.eval[i] = eig[t].eval[i]; // TODO: Discuss: is this needed? Is there a better way?
|
|
}
|
|
}
|
|
GridLogIRL.Active( PreviousIRLLogState );
|
|
gridHD->GlobalSum(ConvergenceErrors);
|
|
assert(ConvergenceErrors==0 && "The eingensolver failed to find enough eigenvectors on at least one node");
|
|
#if DEBUG
|
|
// Now write out the 4d eigenvectors
|
|
eig4d.record.operatorXml = "<OPERATOR>Distillation</OPERATOR>";
|
|
eig4d.record.solverXml = "<SOLVER>CG</SOLVER>";
|
|
std::string sEigenPackName(getName());
|
|
sEigenPackName.append(".");
|
|
sEigenPackName.append(std::to_string(vm().getTrajectory()));
|
|
eig4d.write(sEigenPackName,false);
|
|
#endif
|
|
}
|
|
|
|
END_MODULE_NAMESPACE
|
|
|
|
END_HADRONS_NAMESPACE
|
|
|
|
#endif // Hadrons_MDistil_LapEvec_hpp_
|