mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-14 17:55:38 +00:00
128 lines
3.4 KiB
C++
128 lines
3.4 KiB
C++
#include <Grid/Grid.h>
|
|
using namespace Grid;
|
|
|
|
// Function used for Chebyshev smearing
|
|
//
|
|
Real MomentumSmearing(Real p2)
|
|
{
|
|
return (1 - 4.0*p2) * exp(-p2/4);
|
|
}
|
|
Real DistillationSmearing(Real p2)
|
|
{
|
|
if ( p2 > 0.5 ) return 0.0;
|
|
else return 1.0;
|
|
}
|
|
|
|
// Flip sign to make prop to p^2, not -p^2 relative to last example
|
|
template<class Gimpl,class Field> class CovariantLaplacianCshift : public SparseMatrixBase<Field>
|
|
{
|
|
public:
|
|
INHERIT_GIMPL_TYPES(Gimpl);
|
|
|
|
GridBase *grid;
|
|
GaugeField U;
|
|
|
|
CovariantLaplacianCshift(GaugeField &_U) :
|
|
grid(_U.Grid()),
|
|
U(_U) { };
|
|
|
|
virtual GridBase *Grid(void) { return grid; };
|
|
|
|
virtual void M (const Field &in, Field &out)
|
|
{
|
|
out=Zero();
|
|
for(int mu=0;mu<Nd-1;mu++) {
|
|
GaugeLinkField Umu = PeekIndex<LorentzIndex>(U, mu); // NB: Inefficent
|
|
out = out - Gimpl::CovShiftForward(Umu,mu,in);
|
|
out = out - Gimpl::CovShiftBackward(Umu,mu,in);
|
|
out = out + 2.0*in;
|
|
}
|
|
};
|
|
virtual void Mdag (const Field &in, Field &out) { M(in,out);}; // Laplacian is hermitian
|
|
virtual void Mdiag (const Field &in, Field &out) {assert(0);}; // Unimplemented need only for multigrid
|
|
virtual void Mdir (const Field &in, Field &out,int dir, int disp){assert(0);}; // Unimplemented need only for multigrid
|
|
virtual void MdirAll (const Field &in, std::vector<Field> &out) {assert(0);}; // Unimplemented need only for multigrid
|
|
};
|
|
|
|
|
|
|
|
int main(int argc, char ** argv)
|
|
{
|
|
Grid_init(&argc, &argv);
|
|
|
|
typedef LatticeColourVector Field;
|
|
|
|
auto latt_size = GridDefaultLatt();
|
|
auto simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
|
|
auto mpi_layout = GridDefaultMpi();
|
|
|
|
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
|
|
GridParallelRNG RNG(&Grid); RNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
|
|
|
|
|
|
LatticeGaugeField U(&Grid);
|
|
|
|
SU<Nc>::ColdConfiguration(RNG,U);
|
|
|
|
typedef CovariantLaplacianCshift <PeriodicGimplR,Field> Laplacian_t;
|
|
Laplacian_t Laplacian(U);
|
|
|
|
|
|
ColourVector ColourKronecker;
|
|
ColourKronecker = Zero();
|
|
ColourKronecker()()(0) = 1.0;
|
|
|
|
Coordinate site({latt_size[0]/2,
|
|
latt_size[1]/2,
|
|
latt_size[2]/2,
|
|
0});
|
|
|
|
Field kronecker(&Grid);
|
|
kronecker = Zero();
|
|
pokeSite(ColourKronecker,kronecker,site);
|
|
|
|
|
|
Field psi(&Grid), chi(&Grid);
|
|
|
|
//////////////////////////////////////
|
|
// Classic Wuppertal smearing
|
|
//////////////////////////////////////
|
|
|
|
Integer Iterations = 80;
|
|
Real width = 2.0;
|
|
Real coeff = (width*width) / Real(4*Iterations);
|
|
|
|
chi=kronecker;
|
|
// chi = (1-p^2/2N)^N kronecker
|
|
for(int n = 0; n < Iterations; ++n) {
|
|
Laplacian.M(chi,psi);
|
|
chi = chi - coeff*psi;
|
|
}
|
|
|
|
std::cout << " Wuppertal smeared operator is chi = \n" << chi <<std::endl;
|
|
|
|
/////////////////////////////////////
|
|
// Chebyshev smearing
|
|
/////////////////////////////////////
|
|
RealD lo = 0.0;
|
|
RealD hi = 12.0; // Analytic free field bound
|
|
HermitianLinearOperator<Laplacian_t,Field> HermOp(Laplacian);
|
|
|
|
std::cout << " Checking spectral range of our POSITIVE definite operator \n";
|
|
PowerMethod<Field> PM;
|
|
PM(HermOp,kronecker);
|
|
|
|
// Chebyshev<Field> ChebySmear(lo,hi,20,DistillationSmearing);
|
|
Chebyshev<Field> ChebySmear(lo,hi,20,MomentumSmearing);
|
|
{
|
|
std::ofstream of("chebysmear");
|
|
ChebySmear.csv(of);
|
|
}
|
|
|
|
ChebySmear(HermOp,kronecker,chi);
|
|
|
|
std::cout << " Chebyshev smeared operator is chi = \n" << chi <<std::endl;
|
|
|
|
Grid_finalize();
|
|
}
|