mirror of
https://github.com/paboyle/Grid.git
synced 2024-11-10 15:55:37 +00:00
229 lines
7.2 KiB
C++
229 lines
7.2 KiB
C++
|
|
/*************************************************************************************
|
|
|
|
Grid physics library, www.github.com/paboyle/Grid
|
|
|
|
Source file: ./lib/qcd/action/pseudofermion/OneFlavourEvenOddRational.h
|
|
|
|
Copyright (C) 2015
|
|
|
|
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
See the full license in the file "LICENSE" in the top level distribution
|
|
directory
|
|
*************************************************************************************/
|
|
/* END LEGAL */
|
|
#ifndef QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_H
|
|
#define QCD_PSEUDOFERMION_ONE_FLAVOUR_EVEN_ODD_RATIONAL_H
|
|
|
|
namespace Grid {
|
|
namespace QCD {
|
|
|
|
///////////////////////////////////////
|
|
// One flavour rational
|
|
///////////////////////////////////////
|
|
|
|
// S_f = chi^dag * N(Mpc^dag*Mpc)/D(Mpc^dag*Mpc) * chi
|
|
//
|
|
// Here, M is some operator
|
|
// N and D makeup the rat. poly
|
|
//
|
|
|
|
template <class Impl>
|
|
class OneFlavourEvenOddRationalPseudoFermionAction
|
|
: public Action<typename Impl::GaugeField> {
|
|
public:
|
|
INHERIT_IMPL_TYPES(Impl);
|
|
|
|
typedef OneFlavourRationalParams Params;
|
|
Params param;
|
|
|
|
MultiShiftFunction PowerHalf;
|
|
MultiShiftFunction PowerNegHalf;
|
|
MultiShiftFunction PowerQuarter;
|
|
MultiShiftFunction PowerNegQuarter;
|
|
|
|
private:
|
|
FermionOperator<Impl> &FermOp; // the basic operator
|
|
|
|
// NOT using "Nroots"; IroIro is -- perhaps later, but this wasn't good for us
|
|
// historically
|
|
// and hasenbusch works better
|
|
|
|
FermionField PhiEven; // the pseudo fermion field for this trajectory
|
|
FermionField PhiOdd; // the pseudo fermion field for this trajectory
|
|
|
|
public:
|
|
OneFlavourEvenOddRationalPseudoFermionAction(FermionOperator<Impl> &Op,
|
|
Params &p)
|
|
: FermOp(Op),
|
|
PhiEven(Op.FermionRedBlackGrid()),
|
|
PhiOdd(Op.FermionRedBlackGrid()),
|
|
param(p) {
|
|
AlgRemez remez(param.lo, param.hi, param.precision);
|
|
|
|
// MdagM^(+- 1/2)
|
|
std::cout << GridLogMessage << "Generating degree " << param.degree
|
|
<< " for x^(1/2)" << std::endl;
|
|
remez.generateApprox(param.degree, 1, 2);
|
|
PowerHalf.Init(remez, param.tolerance, false);
|
|
PowerNegHalf.Init(remez, param.tolerance, true);
|
|
|
|
// MdagM^(+- 1/4)
|
|
std::cout << GridLogMessage << "Generating degree " << param.degree
|
|
<< " for x^(1/4)" << std::endl;
|
|
remez.generateApprox(param.degree, 1, 4);
|
|
PowerQuarter.Init(remez, param.tolerance, false);
|
|
PowerNegQuarter.Init(remez, param.tolerance, true);
|
|
};
|
|
|
|
virtual std::string action_name(){return "OneFlavourEvenOddRationalPseudoFermionAction";}
|
|
|
|
virtual std::string LogParameters(){
|
|
std::stringstream sstream;
|
|
sstream << GridLogMessage << "["<<action_name()<<"] Low :" << param.lo << std::endl;
|
|
sstream << GridLogMessage << "["<<action_name()<<"] High :" << param.hi << std::endl;
|
|
sstream << GridLogMessage << "["<<action_name()<<"] Max iterations :" << param.MaxIter << std::endl;
|
|
sstream << GridLogMessage << "["<<action_name()<<"] Tolerance :" << param.tolerance << std::endl;
|
|
sstream << GridLogMessage << "["<<action_name()<<"] Degree :" << param.degree << std::endl;
|
|
sstream << GridLogMessage << "["<<action_name()<<"] Precision :" << param.precision << std::endl;
|
|
return sstream.str();
|
|
}
|
|
|
|
virtual void refresh(const GaugeField &U, GridParallelRNG &pRNG) {
|
|
// P(phi) = e^{- phi^dag (MpcdagMpc)^-1/2 phi}
|
|
// = e^{- phi^dag (MpcdagMpc)^-1/4 (MpcdagMpc)^-1/4 phi}
|
|
// Phi = MpcdagMpc^{1/4} eta
|
|
//
|
|
// P(eta) = e^{- eta^dag eta}
|
|
//
|
|
// e^{x^2/2 sig^2} => sig^2 = 0.5.
|
|
//
|
|
// So eta should be of width sig = 1/sqrt(2).
|
|
|
|
RealD scale = std::sqrt(0.5);
|
|
|
|
FermionField eta(FermOp.FermionGrid());
|
|
FermionField etaOdd(FermOp.FermionRedBlackGrid());
|
|
FermionField etaEven(FermOp.FermionRedBlackGrid());
|
|
|
|
gaussian(pRNG, eta);
|
|
eta = eta * scale;
|
|
|
|
pickCheckerboard(Even, etaEven, eta);
|
|
pickCheckerboard(Odd, etaOdd, eta);
|
|
|
|
FermOp.ImportGauge(U);
|
|
|
|
// mutishift CG
|
|
SchurDifferentiableOperator<Impl> Mpc(FermOp);
|
|
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter, PowerQuarter);
|
|
msCG(Mpc, etaOdd, PhiOdd);
|
|
|
|
//////////////////////////////////////////////////////
|
|
// FIXME : Clover term not yet..
|
|
//////////////////////////////////////////////////////
|
|
|
|
assert(FermOp.ConstEE() == 1);
|
|
PhiEven = zero;
|
|
};
|
|
|
|
//////////////////////////////////////////////////////
|
|
// S = phi^dag (Mdag M)^-1/2 phi
|
|
//////////////////////////////////////////////////////
|
|
virtual RealD S(const GaugeField &U) {
|
|
FermOp.ImportGauge(U);
|
|
|
|
FermionField Y(FermOp.FermionRedBlackGrid());
|
|
|
|
SchurDifferentiableOperator<Impl> Mpc(FermOp);
|
|
|
|
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter,
|
|
PowerNegQuarter);
|
|
|
|
msCG(Mpc, PhiOdd, Y);
|
|
|
|
RealD action = norm2(Y);
|
|
std::cout << GridLogMessage << "Pseudofermion action FIXME -- is -1/4 "
|
|
"solve or -1/2 solve faster??? "
|
|
<< action << std::endl;
|
|
|
|
return action;
|
|
};
|
|
|
|
//////////////////////////////////////////////////////
|
|
// Need
|
|
// dS_f/dU = chi^dag d[N/D] chi
|
|
//
|
|
// N/D is expressed as partial fraction expansion:
|
|
//
|
|
// a0 + \sum_k ak/(M^dagM + bk)
|
|
//
|
|
// d[N/D] is then
|
|
//
|
|
// \sum_k -ak [M^dagM+bk]^{-1} [ dM^dag M + M^dag dM ] [M^dag M +
|
|
// bk]^{-1}
|
|
//
|
|
// Need
|
|
// Mf Phi_k = [MdagM+bk]^{-1} Phi
|
|
// Mf Phi = \sum_k ak [MdagM+bk]^{-1} Phi
|
|
//
|
|
// With these building blocks
|
|
//
|
|
// dS/dU = \sum_k -ak Mf Phi_k^dag [ dM^dag M + M^dag dM ] Mf
|
|
// Phi_k
|
|
// S = innerprodReal(Phi,Mf Phi);
|
|
//////////////////////////////////////////////////////
|
|
virtual void deriv(const GaugeField &U, GaugeField &dSdU) {
|
|
const int Npole = PowerNegHalf.poles.size();
|
|
|
|
std::vector<FermionField> MPhi_k(Npole, FermOp.FermionRedBlackGrid());
|
|
|
|
FermionField X(FermOp.FermionRedBlackGrid());
|
|
FermionField Y(FermOp.FermionRedBlackGrid());
|
|
|
|
GaugeField tmp(FermOp.GaugeGrid());
|
|
|
|
FermOp.ImportGauge(U);
|
|
|
|
SchurDifferentiableOperator<Impl> Mpc(FermOp);
|
|
|
|
ConjugateGradientMultiShift<FermionField> msCG(param.MaxIter, PowerNegHalf);
|
|
|
|
msCG(Mpc, PhiOdd, MPhi_k);
|
|
|
|
dSdU = zero;
|
|
for (int k = 0; k < Npole; k++) {
|
|
RealD ak = PowerNegHalf.residues[k];
|
|
|
|
X = MPhi_k[k];
|
|
|
|
Mpc.Mpc(X, Y);
|
|
Mpc.MpcDeriv(tmp, Y, X);
|
|
dSdU = dSdU + ak * tmp;
|
|
Mpc.MpcDagDeriv(tmp, X, Y);
|
|
dSdU = dSdU + ak * tmp;
|
|
}
|
|
|
|
// dSdU = Ta(dSdU);
|
|
};
|
|
};
|
|
}
|
|
}
|
|
|
|
#endif
|