1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00
Grid/Hadrons/Archive/Modules/WeakHamiltonianEye.cc

152 lines
6.1 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: Hadrons/Archive/Modules/WeakHamiltonianEye.cc
Copyright (C) 2015-2019
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Lanny91 <andrew.lawson@gmail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Hadrons/Modules/MContraction/WeakHamiltonianEye.hpp>
using namespace Grid;
using namespace Hadrons;
using namespace MContraction;
/*
* Weak Hamiltonian current-current contractions, Eye-type.
*
* These contractions are generated by the Q1 and Q2 operators in the physical
* basis (see e.g. Fig 3 of arXiv:1507.03094).
*
* Schematics: q4 |
* /-<-¬ |
* / \ | q2 q3
* \ / | /----<------*------<----¬
* q2 \ / q3 | / /-*-¬ \
* /-----<-----* *-----<----¬ | / / \ \
* i * H_W * f | i * \ / q4 * f
* \ / | \ \->-/ /
* \ / | \ /
* \---------->---------/ | \----------->----------/
* q1 | q1
* |
* Saucer (S) | Eye (E)
*
* S: trace(q3*g5*q1*adj(q2)*g5*gL[mu][p_1]*q4*gL[mu][p_2])
* E: trace(q3*g5*q1*adj(q2)*g5*gL[mu][p_1])*trace(q4*gL[mu][p_2])
*
* Note q1 must be sink smeared.
*/
/******************************************************************************
* TWeakHamiltonianEye implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
TWeakHamiltonianEye::TWeakHamiltonianEye(const std::string name)
: Module<WeakHamiltonianPar>(name)
{}
// dependencies/products ///////////////////////////////////////////////////////
std::vector<std::string> TWeakHamiltonianEye::getInput(void)
{
std::vector<std::string> in = {par().q1, par().q2, par().q3, par().q4};
return in;
}
std::vector<std::string> TWeakHamiltonianEye::getOutput(void)
{
std::vector<std::string> out = {};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
void TWeakHamiltonianEye::setup(void)
{
unsigned int ndim = env().getNd();
envTmpLat(LatticeComplex, "expbuf");
envTmpLat(PropagatorField, "tmp1");
envTmpLat(LatticeComplex, "tmp2");
envTmp(std::vector<PropagatorField>, "S_body", 1, ndim, PropagatorField(env().getGrid()));
envTmp(std::vector<PropagatorField>, "S_loop", 1, ndim, PropagatorField(env().getGrid()));
envTmp(std::vector<LatticeComplex>, "E_body", 1, ndim, LatticeComplex(env().getGrid()));
envTmp(std::vector<LatticeComplex>, "E_loop", 1, ndim, LatticeComplex(env().getGrid()));
}
// execution ///////////////////////////////////////////////////////////////////
void TWeakHamiltonianEye::execute(void)
{
LOG(Message) << "Computing Weak Hamiltonian (Eye type) contractions '"
<< getName() << "' using quarks '" << par().q1 << "', '"
<< par().q2 << ", '" << par().q3 << "' and '" << par().q4
<< "'." << std::endl;
auto &q1 = envGet(SlicedPropagator, par().q1);
auto &q2 = envGet(PropagatorField, par().q2);
auto &q3 = envGet(PropagatorField, par().q3);
auto &q4 = envGet(PropagatorField, par().q4);
Gamma g5 = Gamma(Gamma::Algebra::Gamma5);
std::vector<TComplex> corrbuf;
std::vector<Result> result(n_eye_diag);
unsigned int ndim = env().getNd();
envGetTmp(LatticeComplex, expbuf);
envGetTmp(PropagatorField, tmp1);
envGetTmp(LatticeComplex, tmp2);
envGetTmp(std::vector<PropagatorField>, S_body);
envGetTmp(std::vector<PropagatorField>, S_loop);
envGetTmp(std::vector<LatticeComplex>, E_body);
envGetTmp(std::vector<LatticeComplex>, E_loop);
// Get sink timeslice of q1.
SitePropagator q1Snk = q1[par().tSnk];
// Setup for S-type contractions.
for (int mu = 0; mu < ndim; ++mu)
{
S_body[mu] = MAKE_SE_BODY(q1Snk, q2, q3, GammaL(Gamma::gmu[mu]));
S_loop[mu] = MAKE_SE_LOOP(q4, GammaL(Gamma::gmu[mu]));
}
// Perform S-type contractions.
SUM_MU(expbuf, trace(S_body[mu]*S_loop[mu]))
MAKE_DIAG(expbuf, corrbuf, result[S_diag], "HW_S")
// Recycle sub-expressions for E-type contractions.
for (unsigned int mu = 0; mu < ndim; ++mu)
{
E_body[mu] = trace(S_body[mu]);
E_loop[mu] = trace(S_loop[mu]);
}
// Perform E-type contractions.
SUM_MU(expbuf, E_body[mu]*E_loop[mu])
MAKE_DIAG(expbuf, corrbuf, result[E_diag], "HW_E")
// IO
saveResult(par().output, "HW_Eye", result);
}