1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-21 01:25:48 +01:00
Grid/Hadrons/Modules/MDistil/PerambLight.hpp
2019-01-31 11:35:05 +00:00

354 lines
13 KiB
C++

#ifndef Hadrons_MDistil_PerambLight_hpp_
#define Hadrons_MDistil_PerambLight_hpp_
#include <Hadrons/Global.hpp>
#include <Hadrons/Module.hpp>
#include <Hadrons/ModuleFactory.hpp>
#include <Hadrons/Solver.hpp>
#include <Hadrons/EigenPack.hpp>
#include <Hadrons/A2AVectors.hpp>
#include <Hadrons/DilutedNoise.hpp>
// These are members of Distillation
#include <Hadrons/Modules/MDistil/Distil.hpp>
BEGIN_HADRONS_NAMESPACE
/******************************************************************************
* PerambLight *
******************************************************************************/
BEGIN_MODULE_NAMESPACE(MDistil)
class PerambLightPar: Serializable
{
public:
GRID_SERIALIZABLE_CLASS_MEMBERS(PerambLightPar,
std::string, eigenPack,
bool, multiFile,
int, tsrc,
int, nnoise,
int, LI,
int, SI,
int, TI,
int, nvec,
int, Ns,
int, Nt,
int, Nt_inv,
Real, mass,
Real, M5,
int, Ls,
double, CGPrecision,
int, MaxIterations);
};
template <typename FImpl>
class TPerambLight: public Module<PerambLightPar>
{
public:
// constructor
TPerambLight(const std::string name);
// destructor
virtual ~TPerambLight(void);
// dependency relation
virtual std::vector<std::string> getInput(void);
virtual std::vector<std::string> getOutput(void);
// setup
virtual void setup(void);
// execution
virtual void execute(void);
protected:
// These variables are created in setup() and freed in Cleanup()
GridCartesian * grid3d; // Owned by me, so I must delete it
GridCartesian * grid4d; // Owned by environment (so I won't delete it)
protected:
virtual void Cleanup(void);
};
MODULE_REGISTER_TMP(PerambLight, TPerambLight<FIMPL>, MDistil);
/******************************************************************************
* TPerambLight implementation *
******************************************************************************/
// constructor /////////////////////////////////////////////////////////////////
template <typename FImpl>
TPerambLight<FImpl>::TPerambLight(const std::string name)
: grid3d{nullptr}, grid4d{nullptr}, Module<PerambLightPar>(name)
{}
// destructor
template <typename FImpl>
TPerambLight<FImpl>::~TPerambLight(void)
{
Cleanup();
};
// dependencies/products ///////////////////////////////////////////////////////
template <typename FImpl>
std::vector<std::string> TPerambLight<FImpl>::getInput(void)
{
std::vector<std::string> in;
//in.push_back(par().noise);
in.push_back(par().eigenPack);
return in;
}
template <typename FImpl>
std::vector<std::string> TPerambLight<FImpl>::getOutput(void)
{
std::vector<std::string> out = {getName() + "_perambulator_light",getName() + "_noise"};
return out;
}
// setup ///////////////////////////////////////////////////////////////////////
template <typename FImpl>
void TPerambLight<FImpl>::setup(void)
{
Cleanup();
// auto &noise = envGet(std::vector<std::vector<std::vector<SpinVector>>>, par().noise);
const int LI{par().LI};
const int SI{par().SI};
//const int TI{par().TI};
const int nnoise{par().nnoise};
const int Nt{par().Nt};
const int Nt_inv{par().Nt_inv};
const int nvec{par().nvec};
envCreate(Perambulator<SpinVector>, getName() + "_perambulator_light", 1,
Nt,nvec,LI,nnoise,Nt_inv,SI);
envCreate(std::vector<Complex>, getName() + "_noise", 1,
nvec*Ns*Nt*nnoise);
grid4d = env().getGrid();
/*std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd, vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
std::vector<int> simd_layout_3 = GridDefaultSimd(Nd-1, vComplex::Nsimd());
latt_size[Nd-1] = 1;
simd_layout_3.push_back( 1 );
mpi_layout[Nd-1] = 1;*/
grid3d = MakeLowerDimGrid(grid4d);//new GridCartesian(latt_size,simd_layout_3,mpi_layout,*grid4d);
envTmp(LatticeSpinColourVector, "dist_source",1,LatticeSpinColourVector(grid4d));
envTmp(LatticeSpinColourVector, "tmp2",1,LatticeSpinColourVector(grid4d));
envTmp(LatticeSpinColourVector, "result",1,LatticeSpinColourVector(grid4d));
envTmp(LatticeSpinColourVector, "result_single_component",1,LatticeSpinColourVector(grid4d));
envTmp(LatticeColourVector, "result_nospin",1,LatticeColourVector(grid4d));
envTmp(LatticeColourVector, "tmp_nospin",1,LatticeColourVector(grid4d));
envTmp(LatticeSpinColourVector, "tmp3d",1,LatticeSpinColourVector(grid3d));
envTmp(LatticeColourVector, "tmp3d_nospin",1,LatticeColourVector(grid3d));
envTmp(LatticeColourVector, "result_3d",1,LatticeColourVector(grid3d));
envTmp(LatticeColourVector, "evec3d",1,LatticeColourVector(grid3d));
envTmp(LatticeSpinVector, "peramb_tmp",1,LatticeSpinVector(grid4d));
}
// clean up any temporaries created by setup (that aren't stored in the environment)
template <typename FImpl>
void TPerambLight<FImpl>::Cleanup(void)
{
if( grid3d != nullptr ) {
delete grid3d;
grid3d = nullptr;
}
grid4d = nullptr;
}
// execution ///////////////////////////////////////////////////////////////////
template <typename FImpl>
void TPerambLight<FImpl>::execute(void)
{
//auto &noise = envGet(std::vector<std::vector<std::vector<SpinVector>>>, par().noise);
auto &noise = envGet(std::vector<Complex>, getName() + "_noise");
auto &perambulator = envGet(Perambulator<SpinVector>, getName() + "_perambulator_light");
auto &epack = envGet(Grid::Hadrons::EigenPack<LatticeColourVector>, par().eigenPack);
/*GridCartesian * grid4d = env().getGrid();
std::vector<int> latt_size = GridDefaultLatt();
std::vector<int> simd_layout = GridDefaultSimd(Nd, vComplex::Nsimd());
std::vector<int> mpi_layout = GridDefaultMpi();
std::vector<int> simd_layout_3 = GridDefaultSimd(Nd-1, vComplex::Nsimd());
latt_size[Nd-1] = 1;
simd_layout_3.push_back( 1 );
mpi_layout[Nd-1] = 1;
GridCartesian * grid3d = new GridCartesian(latt_size,simd_layout_3,mpi_layout,*grid4d);*/
LatticeGaugeField Umu(grid4d);
FieldMetaData header;
if((1)){
const std::vector<int> seeds({1, 2, 3, 4, 5});
GridParallelRNG pRNG4d(grid4d);
pRNG4d.SeedFixedIntegers(seeds);
std::cout << GridLogMessage << "now hot config" << std::endl;
SU<Nc>::HotConfiguration(pRNG4d, Umu);
std::cout << GridLogMessage << "hot cfg done." << std::endl;
// Set up the SAME gauge field on every time plane
// int Nt = grid4d->gDimensions()[Tdir];
Grid_unquiesce_nodes();
auto Usft = Umu;
Lattice<iScalar<vInteger> > coor(grid4d);
LatticeCoordinate(coor,Tdir);
for(int t=1;t<par().Nt;t++){
// t=1
// Umu Usft
// 0,1,2,3,4,5,6,7 -> 7,0,1,2,3,4,5,6 t=1
// 0,0,2,3,4,5,6,7 6,7,0,1,2,3,4,5 t=2
// 0,0,0,3,4,5,6,7 5,6,7,0,1,2,3,4 t=3
//...
Usft = Cshift(Usft,Tdir,-1);
Umu = where(coor==t,Usft,Umu);
}
} else {
std::string fileName( "/home/dp008/dp008/dc-rich6/Scripts/ConfigsDeflQED/ckpoint_lat.3000" );
std::cout << GridLogMessage << "Loading NERSC configuration from '" << fileName << "'" << std::endl;
NerscIO::readConfiguration(Umu, header, fileName);
std::cout << GridLogMessage << "reading done." << std::endl;
}
envGetTmp(LatticeSpinColourVector, dist_source);
envGetTmp(LatticeSpinColourVector, tmp2);
envGetTmp(LatticeSpinColourVector, result);
envGetTmp(LatticeSpinColourVector, result_single_component);
envGetTmp(LatticeColourVector, result_nospin);
envGetTmp(LatticeColourVector, tmp_nospin);
envGetTmp(LatticeSpinColourVector, tmp3d);
envGetTmp(LatticeColourVector, tmp3d_nospin);
envGetTmp(LatticeColourVector, result_3d);
envGetTmp(LatticeColourVector, evec3d);
envGetTmp(LatticeSpinVector, peramb_tmp);
int Ntlocal = grid4d->LocalDimensions()[3];
int Ntfirst = grid4d->LocalStarts()[3];
int tsrc=par().tsrc;
int nnoise=par().nnoise;
int LI=par().LI;
int Ns=par().Ns;
int Nt_inv=par().Nt_inv;
int Nt=par().Nt;
int TI=par().TI;
int nvec=par().nvec;
bool full_tdil=(TI==Nt);
bool exact_distillation = (full_tdil && LI==nvec);
//Create Noises
//std::cout << pszGaugeConfigFile << std::endl;
//GridSerialRNG sRNG; sRNG.SeedUniqueString(std::string(pszGaugeConfigFile));
GridSerialRNG sRNG; sRNG.SeedUniqueString("unique_string");
Real rn;
for (int inoise=0;inoise<nnoise;inoise++) {
for (int t=0;t<Nt;t++) {
for (int ivec=0;ivec<nvec;ivec++) {
for (int is=0;is<Ns;is++) {
if (exact_distillation)
noise[inoise + nnoise*(t + Nt*(ivec+nvec*is))] = 1.;
//noises[inoise][t][ivec]()(is)() = 1.;
else{
random(sRNG,rn);
noise[inoise + nnoise*(t + Nt*(ivec+nvec*is))] = (rn-0.5 > 0) - (rn-0.5 < 0); //TODO: This could be 0 if rn==0.5!!
//noises[inoise][t][ivec]()(is)() = (rn-0.5 > 0) - (rn-0.5 < 0); //TODO: This could be 0 if rn==0.5!!
}
}
}
}
}
Real mass=par().mass; // TODO Infile
Real M5 =par().M5; // TODO Infile
std::cout << "init RBG " << std::endl;
GridRedBlackCartesian RBGrid(grid4d);
std::cout << "init RBG done" << std::endl;
int Ls=par().Ls;
double CGPrecision = par().CGPrecision;
int MaxIterations = par().MaxIterations;
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,grid4d);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,grid4d);
typedef DomainWallFermionR FermionAction;
FermionAction Dop(Umu,*FGrid,*FrbGrid,*grid4d,RBGrid,mass,M5);
MdagMLinearOperator<FermionAction,LatticeFermion> HermOp(Dop);
ConjugateGradient<LatticeFermion> CG(CGPrecision,MaxIterations);
SchurRedBlackDiagMooeeSolve<LatticeFermion> SchurSolver(CG);
int t_inv;
for (int inoise = 0; inoise < nnoise; inoise++) {
for (int dk = 0; dk < LI; dk++) {
for (int dt = 0; dt < Nt_inv; dt++) {
for (int ds = 0; ds < Ns; ds++) {
std::cout << "LapH source vector from noise " << inoise << " and dilution component (d_k,d_t,d_alpha) : (" << dk << ","<< dt << "," << ds << ")" << std::endl;
dist_source = zero;
tmp3d_nospin = zero;
evec3d = zero;
for (int it = dt; it < Nt; it += TI){
if (full_tdil) t_inv = tsrc; else t_inv = it;
if( t_inv >= Ntfirst && t_inv < Ntfirst + Ntlocal ) {
for (int ik = dk; ik < nvec; ik += LI){
for (int is = ds; is < Ns; is += Ns){ //at the moment, full spin dilution is enforced
ExtractSliceLocal(evec3d,epack.evec[ik],0,t_inv,3);
tmp3d_nospin = evec3d * noise[inoise + nnoise*(t_inv + Nt*(ik+nvec*is))];
tmp3d=zero;
pokeSpin(tmp3d,tmp3d_nospin,is);
tmp2=zero;
InsertSliceLocal(tmp3d,tmp2,0,t_inv-Ntfirst,Grid::QCD::Tdir);
dist_source += tmp2;
}
}
}
}
std::cout << "Inversion for noise " << inoise << " and dilution component (d_k,d_t,d_alpha) : (" << dk << ","<< dt << "," << ds << ")" << std::endl;
result=zero;
LatticeFermion src5(FGrid);
LatticeFermion sol5(FGrid);
Dop.ImportPhysicalFermionSource(dist_source,src5);
SchurSolver(Dop,src5,sol5);
Dop.ExportPhysicalFermionSolution(sol5,result); //These are the meson sinks
//if (compute_current_sink)
// current_sink[inoise+nnoise*(dk+LI*(dt+Nt_inv*ds))] = result;
std::cout << "Contraction of perambulator from noise " << inoise << " and dilution component (d_k,d_t,d_alpha) : (" << dk << ","<< dt << "," << ds << ")" << std::endl;
for (int is = 0; is < Ns; is++) {
result_nospin = peekSpin(result,is);
for (int t = Ntfirst; t < Ntfirst + Ntlocal; t++) {
ExtractSliceLocal(result_3d,result_nospin,0,t-Ntfirst,Grid::QCD::Tdir);
for (int ivec = 0; ivec < nvec; ivec++) {
ExtractSliceLocal(evec3d,epack.evec[ivec],0,t,3);
pokeSpin(perambulator(t, ivec, dk, inoise,dt,ds),innerProduct(evec3d, result_3d),is);
std::cout << "perambulator(t, ivec, dk, inoise,dt,ds)(is) = (" << t << "," << ivec << "," << dk << "," << inoise << "," << dt << "," << ds << ")(" << is << ") = " << perambulator(t, ivec, dk, inoise,dt,ds)()(is)() << std::endl;
}
}
}
}
}
}
}
std::cout << "perambulator done" << std::endl;
perambulator.SliceShare( grid3d, grid4d );
// THIS IS WHERE WE WANT TO SAVE THE PERAMBULATORS TO DISK
perambulator.WriteTemporary(std::string("perambulators/file"));
}
END_MODULE_NAMESPACE
END_HADRONS_NAMESPACE
#endif // Hadrons_MDistil_PerambLight_hpp_