1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00
Grid/benchmarks/Benchmark_su3_gpu.cc
2020-09-16 03:35:03 +01:00

402 lines
17 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./benchmarks/Benchmark_su3.cc
Copyright (C) 2015
Author: Peter Boyle <paboyle@ph.ed.ac.uk>
Author: Peter Boyle <peterboyle@Peters-MacBook-Pro-2.local>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
#define LMIN (16)
#define LMAX (48)
#define LADD (8)
int64_t Nwarm=20;
int64_t Nloop=50;
Coordinate simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
Coordinate mpi_layout = GridDefaultMpi();
int64_t threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking SU3xSU3 ext/ins z = x*y"<<std::endl;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s\t\t GFlop/s"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
for(int lat=LMIN;lat<=LMAX;lat+=LADD){
Coordinate latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int64_t vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeColourMatrix z(&Grid);// random(pRNG,z);
LatticeColourMatrix x(&Grid);// random(pRNG,x);
LatticeColourMatrix y(&Grid);// random(pRNG,y);
autoView( x_v , x, AcceleratorRead);
autoView( y_v , y, AcceleratorRead);
autoView( z_v , z, AcceleratorWrite);
const uint64_t Nsite = x_v.size();
const uint64_t nsimd = vComplex::Nsimd();
for(int64_t i=0;i<Nwarm;i++){
accelerator_for( ss, Nsite, nsimd ,{
auto xx = coalescedRead(x_v[ss]);
auto yy = coalescedRead(y_v[ss]);
auto zz = xx*yy;
coalescedWrite(z_v[ss],zz);
});
}
double start=usecond();
for(int64_t i=0;i<Nloop;i++){
accelerator_for( ss, Nsite, nsimd ,{
auto xx = coalescedRead(x_v[ss]);
auto yy = coalescedRead(y_v[ss]);
auto zz = xx*yy;
coalescedWrite(z_v[ss],zz);
});
}
double stop=usecond();
double time = (stop-start)/Nloop*1000.0;
double bytes=3.0*vol*Nc*Nc*sizeof(Complex);
double footprint=3.0*vol*Nc*Nc*sizeof(Complex);
double flops=Nc*Nc*(6.0+8.0+8.0)*vol;
std::cout<<GridLogMessage<<std::setprecision(3) << lat<<"\t\t"<<footprint<<" \t\t"<<bytes/time<<"\t\t" << flops/time<<std::endl;
}
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking SU3xSU3 ext/ins x = x*y"<<std::endl;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s\t\t GFlop/s"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
for(int lat=LMIN;lat<=LMAX;lat+=LADD){
Coordinate latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int64_t vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeColourMatrix z(&Grid);// random(pRNG,z);
LatticeColourMatrix x(&Grid);// random(pRNG,x);
LatticeColourMatrix y(&Grid);// random(pRNG,y);
autoView( x_v , x, AcceleratorWrite);
autoView( y_v , y, AcceleratorRead);
autoView( z_v , z, AcceleratorRead);
const uint64_t Nsite = x_v.size();
const uint64_t nsimd = vComplex::Nsimd();
for(int64_t i=0;i<Nwarm;i++){
accelerator_for( ss, Nsite, nsimd ,{
auto xx = coalescedRead(x_v[ss]);
auto yy = coalescedRead(y_v[ss]);
auto zz = xx*yy;
coalescedWrite(x_v[ss],zz);
});
}
double start=usecond();
for(int64_t i=0;i<Nloop;i++){
accelerator_for( ss, Nsite, nsimd ,{
auto xx = coalescedRead(x_v[ss]);
auto yy = coalescedRead(y_v[ss]);
auto zz = xx*yy;
coalescedWrite(x_v[ss],zz);
});
}
double stop=usecond();
double time = (stop-start)/Nloop*1000.0;
double bytes=3.0*vol*Nc*Nc*sizeof(Complex);
double footprint=2.0*vol*Nc*Nc*sizeof(Complex);
double flops=Nc*Nc*(6.0+8.0+8.0)*vol;
std::cout<<GridLogMessage<<std::setprecision(3) << lat<<"\t\t"<<footprint<<" \t\t"<<bytes/time<<"\t\t" << flops/time<<std::endl;
}
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking SU3xSU3 ext/ins z = z + x*y"<<std::endl;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s\t\t GFlop/s"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
for(int lat=LMIN;lat<=LMAX;lat+=LADD){
Coordinate latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int64_t vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeColourMatrix z(&Grid);// random(pRNG,z);
LatticeColourMatrix x(&Grid);// random(pRNG,x);
LatticeColourMatrix y(&Grid);// random(pRNG,y);
autoView( x_v , x, AcceleratorRead);
autoView( y_v , y, AcceleratorRead);
autoView( z_v , z, AcceleratorWrite);
const uint64_t Nsite = x_v.size();
const uint64_t nsimd = vComplex::Nsimd();
for(int64_t i=0;i<Nwarm;i++){
accelerator_for( ss, Nsite, nsimd ,{
auto xx = coalescedRead(x_v[ss]);
auto yy = coalescedRead(y_v[ss]);
auto zz = coalescedRead(z_v[ss]);
zz = zz+xx*yy;
coalescedWrite(z_v[ss],zz);
});
}
double start=usecond();
for(int64_t i=0;i<Nloop;i++){
accelerator_for( ss, Nsite, nsimd ,{
auto xx = coalescedRead(x_v[ss]);
auto yy = coalescedRead(y_v[ss]);
auto zz = coalescedRead(z_v[ss]);
//zz = zz+xx*yy;
mac(&zz,&xx,&yy);
coalescedWrite(z_v[ss],zz);
});
}
double stop=usecond();
double time = (stop-start)/Nloop*1000.0;
double bytes=4.0*vol*Nc*Nc*sizeof(Complex);
double footprint=3.0*vol*Nc*Nc*sizeof(Complex);
double flops=Nc*Nc*(6.0+8.0+8.0)*vol;
std::cout<<GridLogMessage<<std::setprecision(3) << lat<<"\t\t"<<footprint<<" \t\t"<<bytes/time<<"\t\t" << flops/time<<std::endl;
}
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking SU3xSU3 ext/ins w = z + x*y"<<std::endl;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s\t\t GFlop/s"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
for(int lat=LMIN;lat<=LMAX;lat+=LADD){
Coordinate latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int64_t vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeColourMatrix z(&Grid);// random(pRNG,z);
LatticeColourMatrix x(&Grid);// random(pRNG,x);
LatticeColourMatrix y(&Grid);// random(pRNG,y);
LatticeColourMatrix w(&Grid);// random(pRNG,y);
autoView( x_v , x, AcceleratorRead);
autoView( y_v , y, AcceleratorRead);
autoView( z_v , z, AcceleratorRead);
autoView( w_v , w, AcceleratorWrite);
const uint64_t Nsite = x_v.size();
const uint64_t nsimd = vComplex::Nsimd();
for(int64_t i=0;i<Nwarm;i++){
accelerator_for( ss, Nsite, nsimd ,{
auto xx = coalescedRead(x_v[ss]);
auto yy = coalescedRead(y_v[ss]);
auto zz = coalescedRead(z_v[ss]);
auto ww = zz+xx*yy;
coalescedWrite(w_v[ss],ww);
});
}
double start=usecond();
for(int64_t i=0;i<Nloop;i++){
accelerator_for( ss, Nsite, nsimd ,{
auto xx = coalescedRead(x_v[ss]);
auto yy = coalescedRead(y_v[ss]);
auto zz = coalescedRead(z_v[ss]);
auto ww = zz+xx*yy;
coalescedWrite(w_v[ss],ww);
});
}
double stop=usecond();
double time = (stop-start)/Nloop*1000.0;
double bytes=4.0*vol*Nc*Nc*sizeof(Complex);
double footprint=3.0*vol*Nc*Nc*sizeof(Complex);
double flops=Nc*Nc*(6.0+8.0+8.0)*vol;
std::cout<<GridLogMessage<<std::setprecision(3) << lat<<"\t\t"<<footprint<<" \t\t"<<bytes/time<<"\t\t" << flops/time<<std::endl;
}
#if 1
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking SU3xSU3 x= x*y"<<std::endl;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s\t\t GFlop/s"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
for(int lat=LMIN;lat<=LMAX;lat+=LADD){
Coordinate latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int64_t vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeColourMatrix z(&Grid); random(pRNG,z);
LatticeColourMatrix x(&Grid); random(pRNG,x);
LatticeColourMatrix y(&Grid); random(pRNG,y);
for(int64_t i=0;i<Nwarm;i++){
x=x*y;
}
double start=usecond();
for(int64_t i=0;i<Nloop;i++){
x=x*y;
}
double stop=usecond();
double time = (stop-start)/Nloop*1000.0;
double bytes=3.0*vol*Nc*Nc*sizeof(Complex);
double footprint=2.0*vol*Nc*Nc*sizeof(Complex);
double flops=Nc*Nc*(6.0+8.0+8.0)*vol;
std::cout<<GridLogMessage<<std::setprecision(3) << lat<<"\t\t"<<footprint<<" \t\t"<<bytes/time<<"\t\t" << flops/time<<std::endl;
}
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking SU3xSU3 z= x*y"<<std::endl;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s\t\t GFlop/s"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
for(int lat=LMIN;lat<=LMAX;lat+=LADD){
Coordinate latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int64_t vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeColourMatrix z(&Grid); random(pRNG,z);
LatticeColourMatrix x(&Grid); random(pRNG,x);
LatticeColourMatrix y(&Grid); random(pRNG,y);
for(int64_t i=0;i<Nwarm;i++){
z=x*y;
}
double start=usecond();
for(int64_t i=0;i<Nloop;i++){
z=x*y;
}
double stop=usecond();
double time = (stop-start)/Nloop*1000.0;
double bytes=3*vol*Nc*Nc*sizeof(Complex);
double flops=Nc*Nc*(6+8+8)*vol;
std::cout<<GridLogMessage<<std::setprecision(3) << lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t" << flops/time<<std::endl;
}
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking SU3xSU3 mult(z,x,y)"<<std::endl;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s\t\t GFlop/s"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
for(int lat=LMIN;lat<=LMAX;lat+=LADD){
Coordinate latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int64_t vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeColourMatrix z(&Grid); random(pRNG,z);
LatticeColourMatrix x(&Grid); random(pRNG,x);
LatticeColourMatrix y(&Grid); random(pRNG,y);
for(int64_t i=0;i<Nwarm;i++){
mult(z,x,y);
}
double start=usecond();
for(int64_t i=0;i<Nloop;i++){
mult(z,x,y);
// mac(z,x,y);
}
double stop=usecond();
double time = (stop-start)/Nloop*1000.0;
double bytes=3*vol*Nc*Nc*sizeof(Complex);
double flops=Nc*Nc*(6+8+8)*vol;
std::cout<<GridLogMessage<<std::setprecision(3) << lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t" << flops/time<<std::endl;
}
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << "= Benchmarking SU3xSU3 mac(z,x,y)"<<std::endl;
std::cout<<GridLogMessage << "===================================================================================================="<<std::endl;
std::cout<<GridLogMessage << " L "<<"\t\t"<<"bytes"<<"\t\t\t"<<"GB/s\t\t GFlop/s"<<std::endl;
std::cout<<GridLogMessage << "----------------------------------------------------------"<<std::endl;
for(int lat=LMIN;lat<=LMAX;lat+=LADD){
Coordinate latt_size ({lat*mpi_layout[0],lat*mpi_layout[1],lat*mpi_layout[2],lat*mpi_layout[3]});
int64_t vol = latt_size[0]*latt_size[1]*latt_size[2]*latt_size[3];
GridCartesian Grid(latt_size,simd_layout,mpi_layout);
GridParallelRNG pRNG(&Grid); pRNG.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
LatticeColourMatrix z(&Grid); random(pRNG,z);
LatticeColourMatrix x(&Grid); random(pRNG,x);
LatticeColourMatrix y(&Grid); random(pRNG,y);
for(int64_t i=0;i<Nwarm;i++){
mac(z,x,y);
}
double start=usecond();
for(int64_t i=0;i<Nloop;i++){
mac(z,x,y);
}
double stop=usecond();
double time = (stop-start)/Nloop*1000.0;
double bytes=4*vol*Nc*Nc*sizeof(Complex);
double flops=Nc*Nc*(8+8+8)*vol;
std::cout<<GridLogMessage<<std::setprecision(3) << lat<<"\t\t"<<bytes<<" \t\t"<<bytes/time<<"\t\t" << flops/time<<std::endl;
}
#endif
Grid_finalize();
}