1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-13 01:05:36 +00:00
Grid/tests/forces/Test_dwf_gpforce.cc
Christopher Kelly e0e42873c1 Const correctness for Lattice::Replicate
Adapted GeneralEvenOddRationalRatio and Test_rhmc_EOWilsonRatio_doubleVsMixedPrec to recent changes that require passing in serial RNG

For GeneralEvenOddRationalRatio and TwoFlavourEvenOddRatio, broke refresh into two stages, the first of which generates the random field and the second that computes the pseudofermion field.
This allows derived classes to override the generation of the random field, for example in testing.

Test_dwf_gpforce now uses Gparity in x-direction and APBC in time as opposed to G-parity in time

Added Test_action_dwf_gparity2fvs1f that compares the DWF fermion action with the 2f and the 1f (doubled-lattice) implementations of Gparity
2021-04-14 16:41:27 -04:00

248 lines
9.4 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./tests/Test_dwf_gpforce.cc
Copyright (C) 2015
Author: paboyle <paboyle@ph.ed.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution directory
*************************************************************************************/
/* END LEGAL */
#include <Grid/Grid.h>
using namespace std;
using namespace Grid;
;
int main (int argc, char ** argv)
{
Grid_init(&argc,&argv);
Coordinate latt_size = GridDefaultLatt();
Coordinate simd_layout = GridDefaultSimd(Nd,vComplex::Nsimd());
Coordinate mpi_layout = GridDefaultMpi();
const int Ls=8;
GridCartesian * UGrid = SpaceTimeGrid::makeFourDimGrid(GridDefaultLatt(), GridDefaultSimd(Nd,vComplex::Nsimd()),GridDefaultMpi());
GridRedBlackCartesian * UrbGrid = SpaceTimeGrid::makeFourDimRedBlackGrid(UGrid);
GridCartesian * FGrid = SpaceTimeGrid::makeFiveDimGrid(Ls,UGrid);
GridRedBlackCartesian * FrbGrid = SpaceTimeGrid::makeFiveDimRedBlackGrid(Ls,UGrid);
typedef typename GparityDomainWallFermionR::FermionField FermionField;
int threads = GridThread::GetThreads();
std::cout<<GridLogMessage << "Grid is setup to use "<<threads<<" threads"<<std::endl;
std::vector<int> seeds({1,2,3,4});
GridParallelRNG RNG5(FGrid); RNG5.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
GridParallelRNG RNG4(UGrid); RNG4.SeedFixedIntegers(std::vector<int>({45,12,81,9}));
FermionField phi (FGrid); gaussian(RNG5,phi);
FermionField Mphi (FGrid);
FermionField MphiPrime (FGrid);
LatticeGaugeField U(UGrid);
SU<Nc>::HotConfiguration(RNG4,U);
// SU<Nc>::ColdConfiguration(pRNG,U);
////////////////////////////////////
// Unmodified matrix element
////////////////////////////////////
RealD mass=0.2; //kills the diagonal term
RealD M5=1.8;
const int nu = 0; //gparity direction
std::vector<int> twists(Nd,0);
twists[nu] = 1;
twists[Nd-1] = 1; //antiperiodic in time
GparityDomainWallFermionR::ImplParams params;
params.twists = twists;
GparityDomainWallFermionR Dw(U,*FGrid,*FrbGrid,*UGrid,*UrbGrid,mass,M5,params);
Dw.M (phi,Mphi);
ComplexD S = innerProduct(Mphi,Mphi); // pdag MdagM p
// get the deriv of phidag MdagM phi with respect to "U"
LatticeGaugeField UdSdU(UGrid);
LatticeGaugeField tmp(UGrid);
Dw.MDeriv(tmp , Mphi, phi,DaggerNo ); UdSdU=tmp;
Dw.MDeriv(tmp , phi, Mphi,DaggerYes ); UdSdU=(UdSdU+tmp);
// *****************************************************************************************
// *** There is a funny negative sign in all derivatives. This is - UdSdU. ***
// *** ***
// *** Deriv in both Wilson gauge action and the TwoFlavour.h seems to miss a minus sign ***
// *** UdSdU is negated relative to what I think - call what is returned mUdSdU, ***
// *** and insert minus sign ***
// *****************************************************************************************
UdSdU = - UdSdU ; // Follow sign convention of actions in Grid. Seems crazy.
FermionField Ftmp (FGrid);
////////////////////////////////////
// Modify the gauge field a little
////////////////////////////////////
RealD dt = 0.0001;
RealD Hmom = 0.0;
RealD Hmomprime = 0.0;
LatticeColourMatrix mommu(UGrid);
LatticeColourMatrix mUdSdUmu(UGrid);
LatticeGaugeField mom(UGrid);
LatticeGaugeField Uprime(UGrid);
for(int mu=0;mu<Nd;mu++){
SU<Nc>::GaussianFundamentalLieAlgebraMatrix(RNG4, mommu); // Traceless antihermitian momentum; gaussian in lie alg
// Momentum Hamiltonian is - trace(p^2)/HMC_MOM_DENOMINATOR
//
// Integrator.h: RealD H = - FieldImplementation::FieldSquareNorm(P)/HMC_MOMENTUM_DENOMINATOR; // - trace (P*P)/denom // GaugeImplTypes.h: Hloc += trace(Pmu * Pmu);
// Sign comes from a sneaky multiply by "i" in GaussianFundemantalLie algebra
// P is i P^a_\mu T^a, not Pa Ta
//
// Integrator.h: H = Hmom + sum S(action)
Hmom -= real(sum(trace(mommu*mommu)))/ HMC_MOMENTUM_DENOMINATOR;
PokeIndex<LorentzIndex>(mom,mommu,mu);
// -- Drops factor of "i" in the U update: U' = e^{P dt} U [ _not_ e^{iPdt}U ]. P is anti hermitian already
// -- Udot = p U
// fourth order exponential approx
autoView( mom_v, mom, CpuRead);
autoView( U_v , U, CpuRead);
autoView(Uprime_v, Uprime, CpuWrite);
thread_foreach(i,mom_v,{
Uprime_v[i](mu) = U_v[i](mu)
+ mom_v[i](mu)*U_v[i](mu)*dt
+ mom_v[i](mu) *mom_v[i](mu) *U_v[i](mu)*(dt*dt/2.0)
+ mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *U_v[i](mu)*(dt*dt*dt/6.0)
+ mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *U_v[i](mu)*(dt*dt*dt*dt/24.0)
+ mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *U_v[i](mu)*(dt*dt*dt*dt*dt/120.0)
+ mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *mom_v[i](mu) *U_v[i](mu)*(dt*dt*dt*dt*dt*dt/720.0)
;
});
}
std::cout << GridLogMessage <<"Initial mom hamiltonian is "<< Hmom <<std::endl;
Dw.ImportGauge(Uprime);
Dw.M (phi,MphiPrime);
ComplexD Sprime = innerProduct(MphiPrime ,MphiPrime);
//////////////////////////////////////////////
// Use derivative to estimate dS
//////////////////////////////////////////////
//
// Ta has 1/2([ F - adj(F) ])_traceless and want the UdSdU _and_ UdagdSdUdag terms so 2x.
//
LatticeComplex dS(UGrid); dS = Zero();
LatticeComplex dSmom(UGrid); dSmom = Zero();
LatticeComplex dSmom2(UGrid); dSmom2 = Zero();
for(int mu=0;mu<Nd;mu++){
mommu = PeekIndex<LorentzIndex>(UdSdU,mu);
mommu=Ta(mommu); // projectForce , GaugeImplTypes.h
PokeIndex<LorentzIndex>(UdSdU,mommu,mu);
}
for(int mu=0;mu<Nd;mu++){
mUdSdUmu= PeekIndex<LorentzIndex>(UdSdU,mu);
mommu = PeekIndex<LorentzIndex>(mom,mu);
//
// Derive HMC eom:
//
// Sdot = - 2 trace( p p^dot ) / D - trace( p [ mUdSdU - h.c. ] ) = 0
//
//
// Sdot = 0 = - 2 trace( p p^dot ) / D - 2 trace( p Ta( mUdSdU ) = 0
//
// EOM:
//
// pdot = - D Ta( mUdSdU ) -- source of sign is the "funny sign" above
//
// dSqcd_dt = - 2.0*trace(mommu* Ta(mUdSdU) )*dt -- i.e. mUdSdU with adjoint term -> force has a 2x implicit
//
// dH_mom/dt = - 2 trace (p pdot)/Denom
//
// dH_tot / dt = 0 <= pdot = - Denom * mUdSdU
//
// dH_mom/dt = 2 trace (p mUdSdU )
//
// True Momentum delta H has a dt^2 piece
//
// dSmom = [ trace mom*mom - trace ( (mom-Denom*f*dt)(mom-Denom*f*dt) ) ] / Denom
// = 2*trace(mom*f) dt - Denom*dt*dt * trace(f*f).
// = dSmom + dSmom2
//
dS = dS - 2.0*trace(mommu*mUdSdUmu)*dt; // U and Udagger derivs hence 2x.
dSmom = dSmom + 2.0*trace(mommu*mUdSdUmu) * dt; // this 2.0 coms from derivative of p^2
dSmom2 = dSmom2 - trace(mUdSdUmu*mUdSdUmu) * dt*dt* HMC_MOMENTUM_DENOMINATOR; // Remnant
// Update mom action density . Verbatim update_P in Integrator.h
mommu = mommu - mUdSdUmu * dt* HMC_MOMENTUM_DENOMINATOR;;
Hmomprime -= real(sum(trace(mommu*mommu))) / HMC_MOMENTUM_DENOMINATOR;
}
ComplexD dSpred = sum(dS);
ComplexD dSm = sum(dSmom);
ComplexD dSm2 = sum(dSmom2);
std::cout << GridLogMessage <<"dSm "<< dSm<<std::endl;
std::cout << GridLogMessage <<"dSm2 "<< dSm2<<std::endl;
std::cout << GridLogMessage <<"Initial mom hamiltonian is "<< Hmom <<std::endl;
std::cout << GridLogMessage <<"Final mom hamiltonian is "<< Hmomprime <<std::endl;
std::cout << GridLogMessage <<"Delta mom hamiltonian is "<< Hmomprime-Hmom <<std::endl;
std::cout << GridLogMessage <<"predict Delta mom hamiltonian is "<< dSm+dSm2 <<std::endl;
std::cout << GridLogMessage << "Initial S "<<S<<std::endl;
std::cout << GridLogMessage << "Final S "<<Sprime<<std::endl;
std::cout << GridLogMessage << "Delta S "<<Sprime-S<<std::endl;
std::cout << GridLogMessage << "predict delta S"<< dSpred <<std::endl;
std::cout << GridLogMessage << "defect "<< Sprime-S-dSpred <<std::endl;
std::cout << GridLogMessage << "Total dS "<< Hmomprime - Hmom + Sprime - S <<std::endl;
std::cout << GridLogMessage << "dS - dt^2 term "<< Hmomprime - Hmom + Sprime - S - dSm2 <<std::endl;
assert( fabs(real(Sprime-S-dSpred)) < 5.0 ) ;
std::cout<< GridLogMessage << "Done" <<std::endl;
Grid_finalize();
}