1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 17:25:37 +01:00
Grid/lib/parallelIO/IldgIO.h

717 lines
27 KiB
C++

/*************************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: ./lib/parallelIO/IldgIO.h
Copyright (C) 2015
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory
*************************************************************************************/
/* END LEGAL */
#ifndef GRID_ILDG_IO_H
#define GRID_ILDG_IO_H
#ifdef HAVE_LIME
#include <algorithm>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <map>
#include <pwd.h>
#include <sys/utsname.h>
#include <unistd.h>
//C-Lime is a must have for this functionality
extern "C" {
#include "lime.h"
}
namespace Grid {
namespace QCD {
/////////////////////////////////
// Encode word types as strings
/////////////////////////////////
template<class word> inline std::string ScidacWordMnemonic(void){ return std::string("unknown"); }
template<> inline std::string ScidacWordMnemonic<double> (void){ return std::string("D"); }
template<> inline std::string ScidacWordMnemonic<float> (void){ return std::string("F"); }
template<> inline std::string ScidacWordMnemonic< int32_t>(void){ return std::string("I32_t"); }
template<> inline std::string ScidacWordMnemonic<uint32_t>(void){ return std::string("U32_t"); }
template<> inline std::string ScidacWordMnemonic< int64_t>(void){ return std::string("I64_t"); }
template<> inline std::string ScidacWordMnemonic<uint64_t>(void){ return std::string("U64_t"); }
/////////////////////////////////////////
// Encode a generic tensor as a string
/////////////////////////////////////////
template<class vobj> std::string ScidacRecordTypeString(int &colors, int &spins, int & typesize,int &datacount) {
typedef typename getPrecision<vobj>::real_scalar_type stype;
int _ColourN = indexRank<ColourIndex,vobj>();
int _ColourScalar = isScalar<ColourIndex,vobj>();
int _ColourVector = isVector<ColourIndex,vobj>();
int _ColourMatrix = isMatrix<ColourIndex,vobj>();
int _SpinN = indexRank<SpinIndex,vobj>();
int _SpinScalar = isScalar<SpinIndex,vobj>();
int _SpinVector = isVector<SpinIndex,vobj>();
int _SpinMatrix = isMatrix<SpinIndex,vobj>();
int _LorentzN = indexRank<LorentzIndex,vobj>();
int _LorentzScalar = isScalar<LorentzIndex,vobj>();
int _LorentzVector = isVector<LorentzIndex,vobj>();
int _LorentzMatrix = isMatrix<LorentzIndex,vobj>();
std::stringstream stream;
stream << "GRID_";
stream << ScidacWordMnemonic<stype>();
// std::cout << " Lorentz N/S/V/M : " << _LorentzN<<" "<<_LorentzScalar<<"/"<<_LorentzVector<<"/"<<_LorentzMatrix<<std::endl;
// std::cout << " Spin N/S/V/M : " << _SpinN <<" "<<_SpinScalar <<"/"<<_SpinVector <<"/"<<_SpinMatrix<<std::endl;
// std::cout << " Colour N/S/V/M : " << _ColourN <<" "<<_ColourScalar <<"/"<<_ColourVector <<"/"<<_ColourMatrix<<std::endl;
if ( _LorentzVector ) stream << "_LorentzVector"<<_LorentzN;
if ( _LorentzMatrix ) stream << "_LorentzMatrix"<<_LorentzN;
if ( _SpinVector ) stream << "_SpinVector"<<_SpinN;
if ( _SpinMatrix ) stream << "_SpinMatrix"<<_SpinN;
if ( _ColourVector ) stream << "_ColourVector"<<_ColourN;
if ( _ColourMatrix ) stream << "_ColourMatrix"<<_ColourN;
if ( _ColourScalar && _LorentzScalar && _SpinScalar ) stream << "_Complex";
typesize = sizeof(typename vobj::scalar_type);
if ( _ColourMatrix ) typesize*= _ColourN*_ColourN;
else typesize*= _ColourN;
if ( _SpinMatrix ) typesize*= _SpinN*_SpinN;
else typesize*= _SpinN;
colors = _ColourN;
spins = _SpinN;
datacount = _LorentzN;
return stream.str();
}
template<class vobj> std::string ScidacRecordTypeString(Lattice<vobj> & lat,int &colors, int &spins, int & typesize,int &datacount) {
return ScidacRecordTypeString<vobj>(colors,spins,typesize,datacount);
};
////////////////////////////////////////////////////////////
// Helper to fill out metadata
////////////////////////////////////////////////////////////
template<class vobj> void ScidacMetaData(Lattice<vobj> & field,
FieldMetaData &header,
scidacRecord & _scidacRecord,
scidacFile & _scidacFile)
{
typedef typename getPrecision<vobj>::real_scalar_type stype;
/////////////////////////////////////
// Pull Grid's metadata
/////////////////////////////////////
PrepareMetaData(field,header);
/////////////////////////////////////
// Scidac Private File structure
/////////////////////////////////////
_scidacFile = scidacFile(field._grid);
/////////////////////////////////////
// Scidac Private Record structure
/////////////////////////////////////
scidacRecord sr;
sr.datatype = ScidacRecordTypeString(field,sr.colors,sr.spins,sr.typesize,sr.datacount);
sr.date = header.creation_date;
sr.precision = ScidacWordMnemonic<stype>();
sr.recordtype = GRID_IO_FIELD;
_scidacRecord = sr;
std::cout << GridLogMessage << "Build SciDAC datatype " <<sr.datatype<<std::endl;
}
///////////////////////////////////////////////////////
// Scidac checksum
///////////////////////////////////////////////////////
static int scidacChecksumVerify(scidacChecksum &scidacChecksum_,uint32_t scidac_csuma,uint32_t scidac_csumb)
{
uint32_t scidac_checksuma = stoull(scidacChecksum_.suma,0,16);
uint32_t scidac_checksumb = stoull(scidacChecksum_.sumb,0,16);
if ( scidac_csuma !=scidac_checksuma) return 0;
if ( scidac_csumb !=scidac_checksumb) return 0;
return 1;
}
////////////////////////////////////////////////////////////////////////////////////
// Lime, ILDG and Scidac I/O classes
////////////////////////////////////////////////////////////////////////////////////
class GridLimeReader : public BinaryIO {
public:
///////////////////////////////////////////////////
// FIXME: format for RNG? Now just binary out instead
///////////////////////////////////////////////////
FILE *File;
LimeReader *LimeR;
std::string filename;
/////////////////////////////////////////////
// Open the file
/////////////////////////////////////////////
void open(std::string &_filename)
{
filename= _filename;
File = fopen(filename.c_str(), "r");
LimeR = limeCreateReader(File);
}
/////////////////////////////////////////////
// Close the file
/////////////////////////////////////////////
void close(void){
fclose(File);
// limeDestroyReader(LimeR);
}
////////////////////////////////////////////
// Read a generic lattice field and verify checksum
////////////////////////////////////////////
template<class vobj>
void readLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name)
{
typedef typename vobj::scalar_object sobj;
scidacChecksum scidacChecksum_;
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
std::string format = getFormatString<vobj>();
while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) {
std::cout << GridLogMessage << limeReaderType(LimeR) <<std::endl;
if ( strncmp(limeReaderType(LimeR), record_name.c_str(),strlen(record_name.c_str()) ) ) {
off_t offset= ftell(File);
BinarySimpleMunger<sobj,sobj> munge;
BinaryIO::readLatticeObject< sobj, sobj >(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
/////////////////////////////////////////////
// Insist checksum is next record
/////////////////////////////////////////////
readLimeObject(scidacChecksum_,std::string("scidacChecksum"),record_name);
/////////////////////////////////////////////
// Verify checksums
/////////////////////////////////////////////
scidacChecksumVerify(scidacChecksum_,scidac_csuma,scidac_csumb);
return;
}
}
}
////////////////////////////////////////////
// Read a generic serialisable object
////////////////////////////////////////////
template<class serialisable_object>
void readLimeObject(serialisable_object &object,std::string object_name,std::string record_name)
{
std::string xmlstring;
// should this be a do while; can we miss a first record??
while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) {
uint64_t nbytes = limeReaderBytes(LimeR);//size of this record (configuration)
if ( strncmp(limeReaderType(LimeR), record_name.c_str(),strlen(record_name.c_str()) ) ) {
std::vector<char> xmlc(nbytes+1,'\0');
limeReaderReadData((void *)&xmlc[0], &nbytes, LimeR);
XmlReader RD(&xmlc[0],"");
read(RD,object_name,object);
return;
}
}
assert(0);
}
};
class GridLimeWriter : public BinaryIO {
public:
///////////////////////////////////////////////////
// FIXME: format for RNG? Now just binary out instead
///////////////////////////////////////////////////
FILE *File;
LimeWriter *LimeW;
std::string filename;
void open(std::string &_filename) {
filename= _filename;
File = fopen(filename.c_str(), "w");
LimeW = limeCreateWriter(File); assert(LimeW != NULL );
}
/////////////////////////////////////////////
// Close the file
/////////////////////////////////////////////
void close(void) {
fclose(File);
// limeDestroyWriter(LimeW);
}
///////////////////////////////////////////////////////
// Lime utility functions
///////////////////////////////////////////////////////
int createLimeRecordHeader(std::string message, int MB, int ME, size_t PayloadSize)
{
LimeRecordHeader *h;
h = limeCreateHeader(MB, ME, const_cast<char *>(message.c_str()), PayloadSize);
assert(limeWriteRecordHeader(h, LimeW) >= 0);
limeDestroyHeader(h);
return LIME_SUCCESS;
}
////////////////////////////////////////////
// Write a generic serialisable object
////////////////////////////////////////////
template<class serialisable_object>
void writeLimeObject(int MB,int ME,serialisable_object &object,std::string object_name,std::string record_name)
{
std::string xmlstring;
{
XmlWriter WR("","");
write(WR,object_name,object);
xmlstring = WR.XmlString();
}
uint64_t nbytes = xmlstring.size();
int err;
LimeRecordHeader *h = limeCreateHeader(MB, ME,(char *)record_name.c_str(), nbytes); assert(h!= NULL);
err=limeWriteRecordHeader(h, LimeW); assert(err>=0);
err=limeWriteRecordData(&xmlstring[0], &nbytes, LimeW); assert(err>=0);
err=limeWriterCloseRecord(LimeW); assert(err>=0);
limeDestroyHeader(h);
}
////////////////////////////////////////////
// Write a generic lattice field and csum
////////////////////////////////////////////
template<class vobj>
void writeLimeLatticeBinaryObject(Lattice<vobj> &field,std::string record_name)
{
////////////////////////////////////////////
// Create record header
////////////////////////////////////////////
typedef typename vobj::scalar_object sobj;
int err;
uint32_t nersc_csum,scidac_csuma,scidac_csumb;
uint64_t PayloadSize = sizeof(sobj) * field._grid->_gsites;
createLimeRecordHeader(record_name, 0, 0, PayloadSize);
////////////////////////////////////////////////////////////////////
// NB: FILE and iostream are jointly writing disjoint sequences in the
// the same file through different file handles (integer units).
//
// These are both buffered, so why I think this code is right is as follows.
//
// i) write record header to FILE *File, telegraphing the size.
// ii) ftell reads the offset from FILE *File .
// iii) iostream / MPI Open independently seek this offset. Write sequence direct to disk.
// Closes iostream and flushes.
// iv) fseek on FILE * to end of this disjoint section.
// v) Continue writing scidac record.
////////////////////////////////////////////////////////////////////
off_t offset = ftell(File);
std::string format = getFormatString<vobj>();
BinarySimpleMunger<sobj,sobj> munge;
BinaryIO::writeLatticeObject<vobj,sobj>(field, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
err=limeWriterCloseRecord(LimeW); assert(err>=0);
////////////////////////////////////////
// Write checksum element, propagaing forward from the BinaryIO
// Always pair a checksum with a binary object, and close message
////////////////////////////////////////
scidacChecksum checksum;
std::stringstream streama; streama << std::hex << scidac_csuma;
std::stringstream streamb; streamb << std::hex << scidac_csumb;
checksum.suma= streama.str();
checksum.sumb= streamb.str();
std::cout << GridLogMessage<<" writing scidac checksums "<<std::hex<<scidac_csuma<<"/"<<scidac_csumb<<std::dec<<std::endl;
writeLimeObject(0,1,checksum,std::string("scidacChecksum" ),std::string(SCIDAC_CHECKSUM));
}
};
class ScidacWriter : public GridLimeWriter {
public:
template<class SerialisableUserFile>
void writeScidacFileRecord(GridBase *grid,SerialisableUserFile &_userFile)
{
scidacFile _scidacFile(grid);
writeLimeObject(1,0,_scidacFile,_scidacFile.SerialisableClassName(),std::string(SCIDAC_PRIVATE_FILE_XML));
writeLimeObject(0,1,_userFile,_userFile.SerialisableClassName(),std::string(SCIDAC_FILE_XML));
}
////////////////////////////////////////////////
// Write generic lattice field in scidac format
////////////////////////////////////////////////
template <class vobj, class userRecord>
void writeScidacFieldRecord(Lattice<vobj> &field,userRecord _userRecord)
{
typedef typename vobj::scalar_object sobj;
uint64_t nbytes;
GridBase * grid = field._grid;
////////////////////////////////////////
// fill the Grid header
////////////////////////////////////////
FieldMetaData header;
scidacRecord _scidacRecord;
scidacFile _scidacFile;
ScidacMetaData(field,header,_scidacRecord,_scidacFile);
//////////////////////////////////////////////
// Fill the Lime file record by record
//////////////////////////////////////////////
writeLimeObject(1,0,header ,std::string("FieldMetaData"),std::string(GRID_FORMAT)); // Open message
writeLimeObject(0,0,_userRecord,_userRecord.SerialisableClassName(),std::string(SCIDAC_RECORD_XML));
writeLimeObject(0,0,_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
writeLimeLatticeBinaryObject(field,std::string(ILDG_BINARY_DATA)); // Closes message with checksum
}
};
class IldgWriter : public ScidacWriter {
public:
///////////////////////////////////
// A little helper
///////////////////////////////////
void writeLimeIldgLFN(std::string &LFN)
{
uint64_t PayloadSize = LFN.size();
int err;
createLimeRecordHeader(ILDG_DATA_LFN, 0 , 0, PayloadSize);
err=limeWriteRecordData(const_cast<char*>(LFN.c_str()), &PayloadSize,LimeW); assert(err>=0);
err=limeWriterCloseRecord(LimeW); assert(err>=0);
}
////////////////////////////////////////////////////////////////
// Special ILDG operations ; gauge configs only.
// Don't require scidac records EXCEPT checksum
// Use Grid MetaData object if present.
////////////////////////////////////////////////////////////////
template <class vsimd>
void writeConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu,int sequence,std::string LFN,std::string description)
{
GridBase * grid = Umu._grid;
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
typedef iLorentzColourMatrix<vsimd> vobj;
typedef typename vobj::scalar_object sobj;
uint64_t nbytes;
////////////////////////////////////////
// fill the Grid header
////////////////////////////////////////
FieldMetaData header;
scidacRecord _scidacRecord;
scidacFile _scidacFile;
ScidacMetaData(Umu,header,_scidacRecord,_scidacFile);
std::string format = header.floating_point;
header.ensemble_id = description;
header.ensemble_label = description;
header.sequence_number = sequence;
header.ildg_lfn = LFN;
assert ( (format == std::string("IEEE32BIG"))
||(format == std::string("IEEE64BIG")) );
//////////////////////////////////////////////////////
// Fill ILDG header data struct
//////////////////////////////////////////////////////
ildgFormat ildgfmt ;
ildgfmt.field = std::string("su3gauge");
if ( format == std::string("IEEE32BIG") ) {
ildgfmt.precision = 32;
} else {
ildgfmt.precision = 64;
}
ildgfmt.version = 1.0;
ildgfmt.lx = header.dimension[0];
ildgfmt.ly = header.dimension[1];
ildgfmt.lz = header.dimension[2];
ildgfmt.lt = header.dimension[3];
assert(header.nd==4);
assert(header.nd==header.dimension.size());
//////////////////////////////////////////////////////////////////////////////
// Fill the USQCD info field
//////////////////////////////////////////////////////////////////////////////
usqcdInfo info;
info.version=1.0;
info.plaq = header.plaquette;
info.linktr = header.link_trace;
std::cout << GridLogMessage << " Writing config; IldgIO "<<std::endl;
//////////////////////////////////////////////
// Fill the Lime file record by record
//////////////////////////////////////////////
writeLimeObject(1,0,header ,std::string("FieldMetaData"),std::string(GRID_FORMAT)); // Open message
writeLimeObject(0,0,_scidacFile,_scidacFile.SerialisableClassName(),std::string(SCIDAC_PRIVATE_FILE_XML));
writeLimeObject(0,1,info,info.SerialisableClassName(),std::string(SCIDAC_FILE_XML));
writeLimeObject(1,0,_scidacRecord,_scidacRecord.SerialisableClassName(),std::string(SCIDAC_PRIVATE_RECORD_XML));
writeLimeObject(0,0,info,info.SerialisableClassName(),std::string(SCIDAC_RECORD_XML));
writeLimeObject(0,0,ildgfmt,std::string("ildgFormat") ,std::string(ILDG_FORMAT)); // rec
writeLimeIldgLFN(header.ildg_lfn); // rec
writeLimeLatticeBinaryObject(Umu,std::string(ILDG_BINARY_DATA)); // Closes message with checksum
// limeDestroyWriter(LimeW);
fclose(File);
}
};
class IldgReader : public GridLimeReader {
public:
////////////////////////////////////////////////////////////////
// Read either Grid/SciDAC/ILDG configuration
// Don't require scidac records EXCEPT checksum
// Use Grid MetaData object if present.
// Else use ILDG MetaData object if present.
// Else use SciDAC MetaData object if present.
////////////////////////////////////////////////////////////////
template <class vsimd>
void readConfiguration(Lattice<iLorentzColourMatrix<vsimd> > &Umu, FieldMetaData &FieldMetaData_) {
typedef Lattice<iLorentzColourMatrix<vsimd> > GaugeField;
typedef typename GaugeField::vector_object vobj;
typedef typename vobj::scalar_object sobj;
typedef LorentzColourMatrixF fobj;
typedef LorentzColourMatrixD dobj;
GridBase *grid = Umu._grid;
std::vector<int> dims = Umu._grid->FullDimensions();
assert(dims.size()==4);
// Metadata holders
ildgFormat ildgFormat_ ;
std::string ildgLFN_ ;
scidacChecksum scidacChecksum_;
usqcdInfo usqcdInfo_ ;
// track what we read from file
int found_ildgFormat =0;
int found_ildgLFN =0;
int found_scidacChecksum=0;
int found_usqcdInfo =0;
int found_ildgBinary =0;
int found_FieldMetaData =0;
uint32_t nersc_csum;
uint32_t scidac_csuma;
uint32_t scidac_csumb;
// Binary format
std::string format;
//////////////////////////////////////////////////////////////////////////
// Loop over all records
// -- Order is poorly guaranteed except ILDG header preceeds binary section.
// -- Run like an event loop.
// -- Impose trust hierarchy. Grid takes precedence & look for ILDG, and failing
// that Scidac.
// -- Insist on Scidac checksum record.
//////////////////////////////////////////////////////////////////////////
while ( limeReaderNextRecord(LimeR) == LIME_SUCCESS ) {
uint64_t nbytes = limeReaderBytes(LimeR);//size of this record (configuration)
//////////////////////////////////////////////////////////////////
// If not BINARY_DATA read a string and parse
//////////////////////////////////////////////////////////////////
if ( strncmp(limeReaderType(LimeR), ILDG_BINARY_DATA,strlen(ILDG_BINARY_DATA) ) ) {
// Copy out the string
std::vector<char> xmlc(nbytes+1,'\0');
limeReaderReadData((void *)&xmlc[0], &nbytes, LimeR);
std::cout << GridLogMessage<< "Non binary record :" <<limeReaderType(LimeR) <<std::endl; //<<"\n"<<(&xmlc[0])<<std::endl;
//////////////////////////////////
// ILDG format record
if ( !strncmp(limeReaderType(LimeR), ILDG_FORMAT,strlen(ILDG_FORMAT)) ) {
XmlReader RD(&xmlc[0],"");
read(RD,"ildgFormat",ildgFormat_);
if ( ildgFormat_.precision == 64 ) format = std::string("IEEE64BIG");
if ( ildgFormat_.precision == 32 ) format = std::string("IEEE32BIG");
assert( ildgFormat_.lx == dims[0]);
assert( ildgFormat_.ly == dims[1]);
assert( ildgFormat_.lz == dims[2]);
assert( ildgFormat_.lt == dims[3]);
found_ildgFormat = 1;
}
if ( !strncmp(limeReaderType(LimeR), ILDG_DATA_LFN,strlen(ILDG_DATA_LFN)) ) {
FieldMetaData_.ildg_lfn = std::string(&xmlc[0]);
found_ildgLFN = 1;
}
if ( !strncmp(limeReaderType(LimeR), GRID_FORMAT,strlen(ILDG_FORMAT)) ) {
XmlReader RD(&xmlc[0],"");
read(RD,"FieldMetaData",FieldMetaData_);
format = FieldMetaData_.floating_point;
assert(FieldMetaData_.dimension[0] == dims[0]);
assert(FieldMetaData_.dimension[1] == dims[1]);
assert(FieldMetaData_.dimension[2] == dims[2]);
assert(FieldMetaData_.dimension[3] == dims[3]);
found_FieldMetaData = 1;
}
if ( !strncmp(limeReaderType(LimeR), SCIDAC_RECORD_XML,strlen(SCIDAC_RECORD_XML)) ) {
std::string xmls(&xmlc[0]);
// is it a USQCD info field
if ( xmls.find(std::string("usqcdInfo")) != std::string::npos ) {
std::cout << GridLogMessage<<"...found a usqcdInfo field"<<std::endl;
XmlReader RD(&xmlc[0],"");
read(RD,"usqcdInfo",usqcdInfo_);
found_usqcdInfo = 1;
}
}
if ( !strncmp(limeReaderType(LimeR), SCIDAC_CHECKSUM,strlen(SCIDAC_CHECKSUM)) ) {
XmlReader RD(&xmlc[0],"");
read(RD,"scidacChecksum",scidacChecksum_);
found_scidacChecksum = 1;
}
} else {
/////////////////////////////////
// Binary data
/////////////////////////////////
std::cout << GridLogMessage << "ILDG Binary record found : " ILDG_BINARY_DATA << std::endl;
off_t offset= ftell(File);
if ( format == std::string("IEEE64BIG") ) {
GaugeSimpleMunger<dobj, sobj> munge;
BinaryIO::readLatticeObject< vobj, dobj >(Umu, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
} else {
GaugeSimpleMunger<fobj, sobj> munge;
BinaryIO::readLatticeObject< vobj, fobj >(Umu, filename, munge, offset, format,nersc_csum,scidac_csuma,scidac_csumb);
}
found_ildgBinary = 1;
}
}
//////////////////////////////////////////////////////
// Minimally must find binary segment and checksum
// Since this is an ILDG reader require ILDG format
//////////////////////////////////////////////////////
assert(found_ildgBinary);
assert(found_ildgFormat);
assert(found_scidacChecksum);
// Must find something with the lattice dimensions
assert(found_FieldMetaData||found_ildgFormat);
if ( found_FieldMetaData ) {
std::cout << GridLogMessage<<"Grid MetaData was record found: configuration was probably written by Grid ! Yay ! "<<std::endl;
} else {
assert(found_ildgFormat);
assert ( ildgFormat_.field == std::string("su3gauge") );
///////////////////////////////////////////////////////////////////////////////////////
// Populate our Grid metadata as best we can
///////////////////////////////////////////////////////////////////////////////////////
std::ostringstream vers; vers << ildgFormat_.version;
FieldMetaData_.hdr_version = vers.str();
FieldMetaData_.data_type = std::string("4D_SU3_GAUGE_3X3");
FieldMetaData_.nd=4;
FieldMetaData_.dimension.resize(4);
FieldMetaData_.dimension[0] = ildgFormat_.lx ;
FieldMetaData_.dimension[1] = ildgFormat_.ly ;
FieldMetaData_.dimension[2] = ildgFormat_.lz ;
FieldMetaData_.dimension[3] = ildgFormat_.lt ;
if ( found_usqcdInfo ) {
FieldMetaData_.plaquette = usqcdInfo_.plaq;
FieldMetaData_.link_trace= usqcdInfo_.linktr;
std::cout << GridLogMessage <<"This configuration was probably written by USQCD "<<std::endl;
std::cout << GridLogMessage <<"USQCD xml record Plaquette : "<<FieldMetaData_.plaquette<<std::endl;
std::cout << GridLogMessage <<"USQCD xml record LinkTrace : "<<FieldMetaData_.link_trace<<std::endl;
} else {
FieldMetaData_.plaquette = 0.0;
FieldMetaData_.link_trace= 0.0;
std::cout << GridLogWarning << "This configuration is unsafe with no plaquette records that can verify it !!! "<<std::endl;
}
}
////////////////////////////////////////////////////////////
// Really really want to mandate a scidac checksum
////////////////////////////////////////////////////////////
if ( found_scidacChecksum ) {
FieldMetaData_.scidac_checksuma = stoull(scidacChecksum_.suma,0,16);
FieldMetaData_.scidac_checksumb = stoull(scidacChecksum_.sumb,0,16);
scidacChecksumVerify(scidacChecksum_,scidac_csuma,scidac_csumb);
assert( scidac_csuma ==FieldMetaData_.scidac_checksuma);
assert( scidac_csumb ==FieldMetaData_.scidac_checksumb);
std::cout << GridLogMessage<<"SciDAC checksums match " << std::endl;
} else {
std::cout << GridLogWarning<<"SciDAC checksums not found. This is unsafe. " << std::endl;
assert(0); // Can I insist always checksum ?
}
if ( found_FieldMetaData || found_usqcdInfo ) {
FieldMetaData checker;
GaugeStatistics(Umu,checker);
assert(fabs(checker.plaquette - FieldMetaData_.plaquette )<1.0e-5);
assert(fabs(checker.link_trace - FieldMetaData_.link_trace)<1.0e-5);
std::cout << GridLogMessage<<"Plaquette and link trace match " << std::endl;
}
}
};
}}
//HAVE_LIME
#endif
#endif