1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-09-20 09:15:38 +01:00
Grid/tests/hadrons/Test_QED.cc

262 lines
9.7 KiB
C++

/*******************************************************************************
Grid physics library, www.github.com/paboyle/Grid
Source file: tests/hadrons/Test_hadrons_spectrum.cc
Copyright (C) 2015-2018
Author: Antonin Portelli <antonin.portelli@me.com>
Author: Vera Guelpers <v.m.guelpers@soton.ac.uk>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
See the full license in the file "LICENSE" in the top level distribution
directory.
*******************************************************************************/
#include <Grid/Hadrons/Application.hpp>
using namespace Grid;
using namespace Hadrons;
int main(int argc, char *argv[])
{
// initialization //////////////////////////////////////////////////////////
Grid_init(&argc, &argv);
HadronsLogError.Active(GridLogError.isActive());
HadronsLogWarning.Active(GridLogWarning.isActive());
HadronsLogMessage.Active(GridLogMessage.isActive());
HadronsLogIterative.Active(GridLogIterative.isActive());
HadronsLogDebug.Active(GridLogDebug.isActive());
LOG(Message) << "Grid initialized" << std::endl;
// run setup ///////////////////////////////////////////////////////////////
Application application;
std::vector<std::string> flavour = {"h"}; //{"l", "s", "c1", "c2", "c3"};
std::vector<double> mass = {.2}; //{.01, .04, .2 , .25 , .3 };
unsigned int nt = GridDefaultLatt()[Tp];
// global parameters
Application::GlobalPar globalPar;
globalPar.trajCounter.start = 1500;
globalPar.trajCounter.end = 1520;
globalPar.trajCounter.step = 20;
globalPar.seed = "1 2 3 4";
application.setPar(globalPar);
// gauge field
application.createModule<MGauge::Unit>("gauge");
// pt source
MSource::Point::Par ptPar;
ptPar.position = "0 0 0 0";
application.createModule<MSource::Point>("pt", ptPar);
// sink
MSink::Point::Par sinkPar;
sinkPar.mom = "0 0 0";
application.createModule<MSink::ScalarPoint>("sink", sinkPar);
// set fermion boundary conditions to be periodic space, antiperiodic time.
std::string boundary = "1 1 1 -1";
//stochastic photon field
MGauge::StochEm::Par photonPar;
photonPar.gauge = PhotonR::Gauge::feynman;
photonPar.zmScheme = PhotonR::ZmScheme::qedL;
application.createModule<MGauge::StochEm>("ph_field", photonPar);
for (unsigned int i = 0; i < flavour.size(); ++i)
{
// actions
MAction::DWF::Par actionPar;
actionPar.gauge = "gauge";
actionPar.Ls = 8;
actionPar.M5 = 1.8;
actionPar.mass = mass[i];
actionPar.boundary = boundary;
application.createModule<MAction::DWF>("DWF_" + flavour[i], actionPar);
// solvers
MSolver::RBPrecCG::Par solverPar;
solverPar.action = "DWF_" + flavour[i];
solverPar.residual = 1.0e-8;
solverPar.maxIteration = 10000;
application.createModule<MSolver::RBPrecCG>("CG_" + flavour[i],
solverPar);
// propagators
MFermion::GaugeProp::Par quarkPar;
quarkPar.solver = "CG_" + flavour[i];
quarkPar.source = "pt";
application.createModule<MFermion::GaugeProp>("Qpt_" + flavour[i],
quarkPar);
//seq sources with tadpole insertion
MSource::SeqConserved::Par seqPar_T;
seqPar_T.q = "Qpt_" + flavour[i] + "_5d";
seqPar_T.action = "DWF_" + flavour[i];
seqPar_T.tA = 0;
seqPar_T.tB = nt-1;
seqPar_T.curr_type = Current::Tadpole;
seqPar_T.mu_min = 0;
seqPar_T.mu_max = 3;
seqPar_T.mom = "0. 0. 0. 0.";
application.createModule<MSource::SeqConserved>("Qpt_" + flavour[i]
+ "_seq_T", seqPar_T);
// seq propagator with tadpole insertion
MFermion::GaugeProp::Par quarkPar_seq_T;
quarkPar_seq_T.solver = "CG_" + flavour[i];
quarkPar_seq_T.source = "Qpt_" + flavour[i] + "_seq_T";
application.createModule<MFermion::GaugeProp>("Qpt_" + flavour[i]
+ "_seq_T" + flavour[i],
quarkPar_seq_T);
//seq sources with conserved vector and photon insertion
MSource::SeqConserved::Par seqPar_V;
seqPar_V.q = "Qpt_" + flavour[i] + "_5d";
seqPar_V.action = "DWF_" + flavour[i];
seqPar_V.tA = 0;
seqPar_V.tB = nt-1;
seqPar_V.curr_type = Current::Vector;
seqPar_V.mu_min = 0;
seqPar_V.mu_max = 3;
seqPar_V.mom = "0. 0. 0. 0.";
seqPar_V.photon = "ph_field";
application.createModule<MSource::SeqConserved>("Qpt_" + flavour[i]
+ "_seq_V_ph", seqPar_V);
// seq propagator with conserved vector and photon insertion
MFermion::GaugeProp::Par quarkPar_seq_V;
quarkPar_seq_V.solver = "CG_" + flavour[i];
quarkPar_seq_V.source = "Qpt_" + flavour[i] + "_seq_V_ph";
application.createModule<MFermion::GaugeProp>("Qpt_" + flavour[i]
+ "_seq_V_ph_" + flavour[i],
quarkPar_seq_V);
//double seq sources with conserved vector and photon insertion
//(for self energy)
MSource::SeqConserved::Par seqPar_VV;
seqPar_VV.q = "Qpt_" + flavour[i] + "_seq_V_ph_"
+ flavour[i] + "_5d";
seqPar_VV.action = "DWF_" + flavour[i];
seqPar_VV.tA = 0;
seqPar_VV.tB = nt-1;
seqPar_VV.curr_type = Current::Vector;
seqPar_VV.mu_min = 0;
seqPar_VV.mu_max = 3;
seqPar_VV.mom = "0. 0. 0. 0.";
seqPar_VV.photon = "ph_field";
application.createModule<MSource::SeqConserved>("Qpt_" + flavour[i]
+ "_seq_V_ph" + flavour[i]
+ "_seq_V_ph", seqPar_VV);
//double seq propagator with conserved vector and photon insertion
MFermion::GaugeProp::Par quarkPar_seq_VV;
quarkPar_seq_VV.solver = "CG_" + flavour[i];
quarkPar_seq_VV.source = "Qpt_" + flavour[i] + "_seq_V_ph"
+ flavour[i] + "_seq_V_ph";
application.createModule<MFermion::GaugeProp>("Qpt_" + flavour[i]
+ "_seq_V_ph_" + flavour[i]
+ "_seq_V_ph_" + flavour[i],
quarkPar_seq_VV);
}
for (unsigned int i = 0; i < flavour.size(); ++i)
for (unsigned int j = i; j < flavour.size(); ++j)
{
//2pt function contraction
MContraction::Meson::Par mesPar;
mesPar.output = "QED/pt_" + flavour[i] + flavour[j];
mesPar.q1 = "Qpt_" + flavour[i];
mesPar.q2 = "Qpt_" + flavour[j];
mesPar.gammas = "(Gamma5 Gamma5)";
mesPar.sink = "sink";
application.createModule<MContraction::Meson>("meson_pt_"
+ flavour[i] + flavour[j],
mesPar);
//tadpole contraction
MContraction::Meson::Par mesPar_seq_T;
mesPar_seq_T.output = "QED/tadpole_pt_" + flavour[i] + "_T_"
+ flavour[i] + "__" + flavour[j];
mesPar_seq_T.q1 = "Qpt_" + flavour[i] + "_seq_T" + flavour[i];
mesPar_seq_T.q2 = "Qpt_" + flavour[j];
mesPar_seq_T.gammas = "(Gamma5 Gamma5)";
mesPar_seq_T.sink = "sink";
application.createModule<MContraction::Meson>("meson_tadpole_pt_" +
flavour[i] + "_seq_T"
+ flavour[i] + flavour[j],
mesPar_seq_T);
//photon exchange contraction
MContraction::Meson::Par mesPar_seq_E;
mesPar_seq_E.output = "QED/exchange_pt_" + flavour[i] + "_V_ph_"
+ flavour[i] + "__" + flavour[j] + "_V_ph_"
+ flavour[j];
mesPar_seq_E.q1 = "Qpt_" + flavour[i] + "_seq_V_ph_" + flavour[i];
mesPar_seq_E.q2 = "Qpt_" + flavour[j] + "_seq_V_ph_" + flavour[j];
mesPar_seq_E.gammas = "(Gamma5 Gamma5)";
mesPar_seq_E.sink = "sink";
application.createModule<MContraction::Meson>("meson_exchange_pt_"
+ flavour[i] + "_seq_V_ph_" + flavour[i]
+ flavour[j] + "_seq_V_ph_" + flavour[j],
mesPar_seq_E);
//self energy contraction
MContraction::Meson::Par mesPar_seq_S;
mesPar_seq_S.output = "QED/selfenergy_pt_" + flavour[i] + "_V_ph_"
+ flavour[i] + "_V_ph_" + flavour[i] + "__"
+ flavour[j];
mesPar_seq_S.q1 = "Qpt_" + flavour[i] + "_seq_V_ph_" + flavour[i]
+ "_seq_V_ph_" + flavour[i];
mesPar_seq_S.q2 = "Qpt_" + flavour[j];
mesPar_seq_S.gammas = "(Gamma5 Gamma5)";
mesPar_seq_S.sink = "sink";
application.createModule<MContraction::Meson>("meson_selfenergy_pt_"
+ flavour[i] + "_seq_V_ph_"
+ flavour[i] + "_seq_V_ph_"
+ flavour[i] + flavour[j],
mesPar_seq_S);
}
// execution
application.saveParameterFile("QED.xml");
application.run();
// epilogue
LOG(Message) << "Grid is finalizing now" << std::endl;
Grid_finalize();
return EXIT_SUCCESS;
}