1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 07:55:35 +00:00
Grid/lib/lattice/Lattice_rng.h
2015-06-03 12:47:05 +01:00

281 lines
7.8 KiB
C++

#ifndef GRID_LATTICE_RNG_H
#define GRID_LATTICE_RNG_H
#include <random>
namespace Grid {
// Wrap seed_seq to give common interface with random_device
class fixedSeed {
public:
typedef std::seed_seq::result_type result_type;
std::seed_seq src;
fixedSeed(std::vector<int> &seeds) : src(seeds.begin(),seeds.end()) {};
result_type operator () (void){
std::vector<result_type> list(1);
src.generate(list.begin(),list.end());
return list[0];
}
};
// real scalars are one component
template<class scalar,class distribution,class generator> void fillScalar(scalar &s,distribution &dist,generator & gen)
{
s=dist(gen);
}
template<class distribution,class generator> void fillScalar(ComplexF &s,distribution &dist, generator &gen)
{
s=ComplexF(dist(gen),dist(gen));
}
template<class distribution,class generator> void fillScalar(ComplexD &s,distribution &dist,generator &gen)
{
s=ComplexD(dist(gen),dist(gen));
}
class GridRNGbase {
public:
GridRNGbase() : _uniform{0,1}, _gaussian(0.0,1.0) {};
int _seeded;
// One generator per site.
// Uniform and Gaussian distributions from these generators.
std::vector<std::ranlux48> _generators;
std::uniform_real_distribution<double> _uniform;
std::normal_distribution<double> _gaussian;
};
class GridSerialRNG : public GridRNGbase {
public:
// FIXME ... do we require lockstep draws of randoms
// from all nodes keeping seeds consistent.
// place a barrier/broadcast in the fill routine
template<class source> void Seed(source &src)
{
typename source::result_type init = src();
CartesianCommunicator::BroadcastWorld(0,(void *)&init,sizeof(init));
_generators[0] = std::ranlux48(init);
_seeded=1;
}
GridSerialRNG() : GridRNGbase() {
_generators.resize(1);
_seeded=0;
}
template <class sobj,class distribution> inline void fill(sobj &l,distribution &dist){
typedef typename sobj::scalar_type scalar_type;
int words = sizeof(sobj)/sizeof(scalar_type);
scalar_type *buf = (scalar_type *) & l;
for(int idx=0;idx<words;idx++){
fillScalar(buf[idx],dist,_generators[0]);
}
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
};
template <class distribution> inline void fill(ComplexF &l,distribution &dist){
fillScalar(l,dist,_generators[0]);
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
}
template <class distribution> inline void fill(ComplexD &l,distribution &dist){
fillScalar(l,dist,_generators[0]);
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
}
template <class distribution> inline void fill(RealF &l,distribution &dist){
fillScalar(l,dist,_generators[0]);
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
}
template <class distribution> inline void fill(RealD &l,distribution &dist){
fillScalar(l,dist,_generators[0]);
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
}
// vector fill
template <class distribution> inline void fill(vComplexF &l,distribution &dist){
RealF *pointer=(RealF *)&l;
for(int i=0;i<2*vComplexF::Nsimd();i++){
fillScalar(pointer[i],dist,_generators[0]);
}
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
}
template <class distribution> inline void fill(vComplexD &l,distribution &dist){
RealD *pointer=(RealD *)&l;
for(int i=0;i<2*vComplexD::Nsimd();i++){
fillScalar(pointer[i],dist,_generators[0]);
}
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
}
template <class distribution> inline void fill(vRealF &l,distribution &dist){
RealF *pointer=(RealF *)&l;
for(int i=0;i<vRealF::Nsimd();i++){
fillScalar(pointer[i],dist,_generators[0]);
}
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
}
template <class distribution> inline void fill(vRealD &l,distribution &dist){
RealD *pointer=(RealD *)&l;
for(int i=0;i<vRealD::Nsimd();i++){
fillScalar(pointer[i],dist,_generators[0]);
}
CartesianCommunicator::BroadcastWorld(0,(void *)&l,sizeof(l));
}
void SeedRandomDevice(void){
std::random_device rd;
Seed(rd);
}
void SeedFixedIntegers(std::vector<int> &seeds){
fixedSeed src(seeds);
Seed(src);
}
};
class GridParallelRNG : public GridRNGbase {
public:
// One generator per site.
std::vector<std::ranlux48> _generators;
// Uniform and Gaussian distributions from these generators.
std::uniform_real_distribution<double> _uniform;
std::normal_distribution<double> _gaussian;
GridBase *_grid;
int _vol;
int generator_idx(int os,int is){
return is*_grid->oSites()+os;
}
GridParallelRNG(GridBase *grid) : GridRNGbase() {
_grid=grid;
_vol =_grid->iSites()*_grid->oSites();
_generators.resize(_vol);
_seeded=0;
}
// This loop could be made faster to avoid the Ahmdahl by
// i) seed generators on each timeslice, for x=y=z=0;
// ii) seed generators on each z for x=y=0
// iii)seed generators on each y,z for x=0
// iv) seed generators on each y,z,x
// made possible by physical indexing.
template<class source> void Seed(source &src)
{
std::vector<int> gcoor;
int gsites = _grid->_gsites;
typename source::result_type init = src();
std::ranlux48 pseeder(init);
std::uniform_int_distribution<uint64_t> ui;
for(int gidx=0;gidx<gsites;gidx++){
int rank,o_idx,i_idx;
_grid->GlobalIndexToGlobalCoor(gidx,gcoor);
_grid->GlobalCoorToRankIndex(rank,o_idx,i_idx,gcoor);
int l_idx=generator_idx(o_idx,i_idx);
std::vector<int> site_seeds(4);
for(int i=0;i<4;i++){
site_seeds[i]= ui(pseeder);
}
_grid->Broadcast(0,(void *)&site_seeds[0],sizeof(int)*site_seeds.size());
if( rank == _grid->ThisRank() ){
fixedSeed ssrc(site_seeds);
typename source::result_type sinit = ssrc();
_generators[l_idx] = std::ranlux48(sinit);
}
}
_seeded=1;
}
//FIXME implement generic IO and create state save/restore
//void SaveState(const std::string<char> &file);
//void LoadState(const std::string<char> &file);
template <class vobj,class distribution> inline void fill(Lattice<vobj> &l,distribution &dist){
typedef typename vobj::scalar_object scalar_object;
typedef typename vobj::scalar_type scalar_type;
typedef typename vobj::vector_type vector_type;
conformable(_grid,l._grid);
int Nsimd =_grid->Nsimd();
int osites=_grid->oSites();
int words=sizeof(scalar_object)/sizeof(scalar_type);
std::vector<scalar_object> buf(Nsimd);
for(int ss=0;ss<osites;ss++){
for(int si=0;si<Nsimd;si++){
int gdx = generator_idx(ss,si); // index of generator state
scalar_type *pointer = (scalar_type *)&buf[si];
for(int idx=0;idx<words;idx++){
fillScalar(pointer[idx],dist,_generators[gdx]);
}
}
// merge into SIMD lanes
merge(l._odata[ss],buf);
}
};
void SeedRandomDevice(void){
std::random_device rd;
Seed(rd);
}
void SeedFixedIntegers(std::vector<int> &seeds){
fixedSeed src(seeds);
Seed(src);
}
};
template <class vobj> inline void random(GridParallelRNG &rng,Lattice<vobj> &l){
rng.fill(l,rng._uniform);
}
template <class vobj> inline void gaussian(GridParallelRNG &rng,Lattice<vobj> &l){
rng.fill(l,rng._gaussian);
}
template <class sobj> inline void random(GridSerialRNG &rng,sobj &l){
rng.fill(l,rng._uniform);
}
template <class sobj> inline void gaussian(GridSerialRNG &rng,sobj &l){
rng.fill(l,rng._gaussian);
}
}
#endif