1
0
mirror of https://github.com/paboyle/Grid.git synced 2024-11-10 15:55:37 +00:00
Grid/lib/algorithms/LinearOperator.h
Peter Boyle 0bc004de7c Domain wall fermions now invert ; have the basis set up for
Tanh/Zolo * (Cayley/PartFrac/ContFrac) * (Mobius/Shamir/Wilson)
Approx        Representation               Kernel.

All are done with space-time taking part in checkerboarding, Ls uncheckerboarded

Have only so far tested the Domain Wall limit of mobius, and at that only checked
that it
i)  Inverts
ii) 5dim DW == Ls copies of 4dim D2
iii) MeeInv Mee == 1
iv) Meo+Mee+Moe+Moo == M unprec.
v) MpcDagMpc is hermitan
vi) Mdag is the adjoint of M between stochastic vectors.

That said, the RB schur solve, RB MpcDagMpc solve, Unprec solve
all converge and the true residual becomes small; so pretty good tests.
2015-06-02 16:57:12 +01:00

132 lines
5.3 KiB
C++

#ifndef GRID_ALGORITHM_LINEAR_OP_H
#define GRID_ALGORITHM_LINEAR_OP_H
namespace Grid {
/////////////////////////////////////////////////////////////////////////////////////////////
// LinearOperators Take a something and return a something.
/////////////////////////////////////////////////////////////////////////////////////////////
//
// Hopefully linearity is satisfied and the AdjOp is indeed the Hermitian conjugateugate (transpose if real):
//SBase
// i) F(a x + b y) = aF(x) + b F(y).
// ii) <x|Op|y> = <y|AdjOp|x>^\ast
//
// Would be fun to have a test linearity & Herm Conj function!
/////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class LinearOperatorBase {
public:
virtual void Op (const Field &in, Field &out) = 0; // Abstract base
virtual void AdjOp (const Field &in, Field &out) = 0; // Abstract base
};
/////////////////////////////////////////////////////////////////////////////////////////////
// Hermitian operators are self adjoint and only require Op to be defined, so refine the base
/////////////////////////////////////////////////////////////////////////////////////////////
template<class Field> class HermitianOperatorBase : public LinearOperatorBase<Field> {
public:
virtual void OpAndNorm(const Field &in, Field &out,double &n1,double &n2)=0;
void AdjOp(const Field &in, Field &out) {
Op(in,out);
};
void Op(const Field &in, Field &out) {
double n1,n2;
OpAndNorm(in,out,n1,n2);
};
};
/////////////////////////////////////////////////////////////////////////////////////////////
// Whereas non hermitian takes a generic sparse matrix (e.g. lattice action)
// conforming to sparse matrix interface and builds the full checkerboard non-herm operator
// Op and AdjOp distinct.
// By sharing the class for Sparse Matrix across multiple operator wrappers, we can share code
// between RB and non-RB variants. Sparse matrix is like the fermion action def, and then
// the wrappers implement the specialisation of "Op" and "AdjOp" to the cases minimising
// replication of code.
/////////////////////////////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class NonHermitianOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
public:
NonHermitianOperator(Matrix &Mat): _Mat(Mat){};
void Op (const Field &in, Field &out){
_Mat.M(in,out);
}
void AdjOp (const Field &in, Field &out){
_Mat.Mdag(in,out);
}
};
////////////////////////////////////////////////////////////////////////////////////
// Redblack Non hermitian wrapper
////////////////////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class NonHermitianCheckerBoardedOperator : public LinearOperatorBase<Field> {
Matrix &_Mat;
public:
NonHermitianCheckerBoardedOperator(Matrix &Mat): _Mat(Mat){};
void Op (const Field &in, Field &out){
_Mat.Mpc(in,out);
}
void AdjOp (const Field &in, Field &out){ //
_Mat.MpcDag(in,out);
}
};
////////////////////////////////////////////////////////////////////////////////////
// Hermitian wrapper
////////////////////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class HermitianOperator : public HermitianOperatorBase<Field> {
Matrix &_Mat;
public:
HermitianOperator(Matrix &Mat): _Mat(Mat) {};
void OpAndNorm(const Field &in, Field &out,double &n1,double &n2){
return _Mat.MdagM(in,out,n1,n2);
}
};
////////////////////////////////////////////////////////////////////////////////////
// Hermitian CheckerBoarded wrapper
////////////////////////////////////////////////////////////////////////////////////
template<class Matrix,class Field>
class HermitianCheckerBoardedOperator : public HermitianOperatorBase<Field> {
Matrix &_Mat;
public:
HermitianCheckerBoardedOperator(Matrix &Mat): _Mat(Mat) {};
void OpAndNorm(const Field &in, Field &out,RealD &n1,RealD &n2){
_Mat.MpcDagMpc(in,out,n1,n2);
}
};
/////////////////////////////////////////////////////////////
// Base classes for functions of operators
/////////////////////////////////////////////////////////////
template<class Field> class OperatorFunction {
public:
virtual void operator() (LinearOperatorBase<Field> &Linop, const Field &in, Field &out) = 0;
};
template<class Field> class HermitianOperatorFunction {
public:
virtual void operator() (HermitianOperatorBase<Field> &Linop, const Field &in, Field &out) = 0;
};
// FIXME : To think about
// Chroma functionality list defining LinearOperator
/*
virtual void operator() (T& chi, const T& psi, enum PlusMinus isign) const = 0;
virtual void operator() (T& chi, const T& psi, enum PlusMinus isign, Real epsilon) const
virtual const Subset& subset() const = 0;
virtual unsigned long nFlops() const { return 0; }
virtual void deriv(P& ds_u, const T& chi, const T& psi, enum PlusMinus isign) const
class UnprecLinearOperator : public DiffLinearOperator<T,P,Q>
const Subset& subset() const {return all;}
};
*/
}
#endif