mirror of
				https://github.com/paboyle/Grid.git
				synced 2025-10-30 19:44:32 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			610 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			610 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*************************************************************************************
 | |
| 
 | |
|     Grid physics library, www.github.com/paboyle/Grid 
 | |
| 
 | |
|     Source file: ./lib/simd/Grid_sse4.h
 | |
| 
 | |
|     Copyright (C) 2015
 | |
| 
 | |
| Author: Azusa Yamaguchi <ayamaguc@staffmail.ed.ac.uk>
 | |
| Author: Peter Boyle <paboyle@ph.ed.ac.uk>
 | |
| Author: neo <cossu@post.kek.jp>
 | |
| 
 | |
|     This program is free software; you can redistribute it and/or modify
 | |
|     it under the terms of the GNU General Public License as published by
 | |
|     the Free Software Foundation; either version 2 of the License, or
 | |
|     (at your option) any later version.
 | |
| 
 | |
|     This program is distributed in the hope that it will be useful,
 | |
|     but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|     GNU General Public License for more details.
 | |
| 
 | |
|     You should have received a copy of the GNU General Public License along
 | |
|     with this program; if not, write to the Free Software Foundation, Inc.,
 | |
|     51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | |
| 
 | |
|     See the full license in the file "LICENSE" in the top level distribution directory
 | |
| *************************************************************************************/
 | |
| /*  END LEGAL */
 | |
| //----------------------------------------------------------------------
 | |
| /*! @file Grid_sse4.h
 | |
|   @brief Optimization libraries for SSE4 instructions set
 | |
| 
 | |
|   Using intrinsics
 | |
| */
 | |
| // Time-stamp: <2015-06-16 23:27:54 neo>
 | |
| //----------------------------------------------------------------------
 | |
| 
 | |
| #include <pmmintrin.h>
 | |
| 
 | |
| NAMESPACE_BEGIN(Grid);
 | |
| NAMESPACE_BEGIN(Optimization);
 | |
| 
 | |
| template<class vtype>
 | |
| union uconv {
 | |
|   __m128 f;
 | |
|   vtype v;
 | |
| };
 | |
| 
 | |
| union u128f {
 | |
|   __m128 v;
 | |
|   float f[4];
 | |
| };
 | |
| union u128d {
 | |
|   __m128d v;
 | |
|   double f[2];
 | |
| };
 | |
|   
 | |
| struct Vsplat{
 | |
|   //Complex float
 | |
|   inline __m128 operator()(float a, float b){
 | |
|     return _mm_set_ps(b,a,b,a);
 | |
|   }
 | |
|   // Real float
 | |
|   inline __m128 operator()(float a){
 | |
|     return _mm_set_ps(a,a,a,a);
 | |
|   }
 | |
|   //Complex double
 | |
|   inline __m128d operator()(double a, double b){
 | |
|     return _mm_set_pd(b,a);
 | |
|   }
 | |
|   //Real double
 | |
|   inline __m128d operator()(double a){
 | |
|     return _mm_set_pd(a,a);
 | |
|   }
 | |
|   //Integer
 | |
|   inline __m128i operator()(Integer a){
 | |
|     return _mm_set1_epi32(a);
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct Vstore{
 | |
|   //Float 
 | |
|   inline void operator()(__m128 a, float* F){
 | |
|     _mm_store_ps(F,a);
 | |
|   }
 | |
|   //Double
 | |
|   inline void operator()(__m128d a, double* D){
 | |
|     _mm_store_pd(D,a);
 | |
|   }
 | |
|   //Integer
 | |
|   inline void operator()(__m128i a, Integer* I){
 | |
|     _mm_store_si128((__m128i *)I,a);
 | |
|   }
 | |
| 
 | |
| };
 | |
| 
 | |
| struct Vstream{
 | |
|   //Float
 | |
|   inline void operator()(float * a, __m128 b){
 | |
|     _mm_stream_ps(a,b);
 | |
|   }
 | |
|   //Double
 | |
|   inline void operator()(double * a, __m128d b){
 | |
|     _mm_stream_pd(a,b);
 | |
|   }
 | |
| 
 | |
| 
 | |
| };
 | |
| 
 | |
| struct Vset{
 | |
|   // Complex float 
 | |
|   inline __m128 operator()(Grid::ComplexF *a){
 | |
|     return _mm_set_ps(a[1].imag(), a[1].real(),a[0].imag(),a[0].real());
 | |
|   }
 | |
|   // Complex double 
 | |
|   inline __m128d operator()(Grid::ComplexD *a){
 | |
|     return _mm_set_pd(a[0].imag(),a[0].real());
 | |
|   }
 | |
|   // Real float 
 | |
|   inline __m128 operator()(float *a){
 | |
|     return _mm_set_ps(a[3],a[2],a[1],a[0]);
 | |
|   }
 | |
|   // Real double
 | |
|   inline __m128d operator()(double *a){
 | |
|     return _mm_set_pd(a[1],a[0]);
 | |
|   }
 | |
|   // Integer
 | |
|   inline __m128i operator()(Integer *a){
 | |
|     return _mm_set_epi32(a[3],a[2],a[1],a[0]);
 | |
|   }
 | |
| 
 | |
| 
 | |
| };
 | |
| 
 | |
| template <typename Out_type, typename In_type>
 | |
| struct Reduce{
 | |
|   //Need templated class to overload output type
 | |
|   //General form must generate error if compiled
 | |
|   inline Out_type operator()(In_type in){
 | |
|     printf("Error, using wrong Reduce function\n");
 | |
|     exit(1);
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /////////////////////////////////////////////////////
 | |
| // Arithmetic operations
 | |
| /////////////////////////////////////////////////////
 | |
| struct Sum{
 | |
|   //Complex/Real float
 | |
|   inline __m128 operator()(__m128 a, __m128 b){
 | |
|     return _mm_add_ps(a,b);
 | |
|   }
 | |
|   //Complex/Real double
 | |
|   inline __m128d operator()(__m128d a, __m128d b){
 | |
|     return _mm_add_pd(a,b);
 | |
|   }
 | |
|   //Integer
 | |
|   inline __m128i operator()(__m128i a, __m128i b){
 | |
|     return _mm_add_epi32(a,b);
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct Sub{
 | |
|   //Complex/Real float
 | |
|   inline __m128 operator()(__m128 a, __m128 b){
 | |
|     return _mm_sub_ps(a,b);
 | |
|   }
 | |
|   //Complex/Real double
 | |
|   inline __m128d operator()(__m128d a, __m128d b){
 | |
|     return _mm_sub_pd(a,b);
 | |
|   }
 | |
|   //Integer
 | |
|   inline __m128i operator()(__m128i a, __m128i b){
 | |
|     return _mm_sub_epi32(a,b);
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct MultRealPart{
 | |
|   inline __m128 operator()(__m128 a, __m128 b){
 | |
|     __m128 ymm0;
 | |
|     ymm0  = _mm_shuffle_ps(a,a,_MM_SELECT_FOUR_FOUR(2,2,0,0)); // ymm0 <- ar ar,
 | |
|     return  _mm_mul_ps(ymm0,b);                       // ymm0 <- ar bi, ar br
 | |
|   }
 | |
|   inline __m128d operator()(__m128d a, __m128d b){
 | |
|     __m128d ymm0;
 | |
|     ymm0 = _mm_shuffle_pd(a,a,0x0); // ymm0 <- ar ar, ar,ar b'00,00
 | |
|     return _mm_mul_pd(ymm0,b);      // ymm0 <- ar bi, ar br
 | |
|   }
 | |
| };
 | |
| struct MaddRealPart{
 | |
|   inline __m128 operator()(__m128 a, __m128 b, __m128 c){
 | |
|     __m128 ymm0 =  _mm_shuffle_ps(a,a,_MM_SELECT_FOUR_FOUR(2,2,0,0)); // ymm0 <- ar ar,
 | |
|     return _mm_add_ps(_mm_mul_ps( ymm0, b),c);                         
 | |
|   }
 | |
|   inline __m128d operator()(__m128d a, __m128d b, __m128d c){
 | |
|     __m128d ymm0 = _mm_shuffle_pd( a, a, 0x0 );
 | |
|     return _mm_add_pd(_mm_mul_pd( ymm0, b),c);                         
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct MultComplex{
 | |
|   // Complex float
 | |
|   inline __m128 operator()(__m128 a, __m128 b){
 | |
|     __m128 ymm0,ymm1,ymm2;
 | |
|     ymm0 = _mm_shuffle_ps(a,a,_MM_SELECT_FOUR_FOUR(2,2,0,0)); // ymm0 <- ar ar,
 | |
|     ymm0 = _mm_mul_ps(ymm0,b);                       // ymm0 <- ar bi, ar br
 | |
|     ymm1 = _mm_shuffle_ps(b,b,_MM_SELECT_FOUR_FOUR(2,3,0,1)); // ymm1 <- br,bi
 | |
|     ymm2 = _mm_shuffle_ps(a,a,_MM_SELECT_FOUR_FOUR(3,3,1,1)); // ymm2 <- ai,ai
 | |
|     ymm1 = _mm_mul_ps(ymm1,ymm2);                    // ymm1 <- br ai, ai bi
 | |
|     return _mm_addsub_ps(ymm0,ymm1);    
 | |
|   }
 | |
|   // Complex double
 | |
|   inline __m128d operator()(__m128d a, __m128d b){
 | |
|     __m128d ymm0,ymm1,ymm2;
 | |
|     ymm0 = _mm_shuffle_pd(a,a,0x0);   // ymm0 <- ar ar,
 | |
|     ymm0 = _mm_mul_pd(ymm0,b);        // ymm0 <- ar bi, ar br
 | |
|     ymm1 = _mm_shuffle_pd(b,b,0x1);   // ymm1 <- br,bi   b01
 | |
|     ymm2 = _mm_shuffle_pd(a,a,0x3);   // ymm2 <- ai,ai   b11
 | |
|     ymm1 = _mm_mul_pd(ymm1,ymm2);     // ymm1 <- br ai, ai bi
 | |
|     return _mm_addsub_pd(ymm0,ymm1);  
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct Mult{
 | |
| 
 | |
|   inline void mac(__m128 &a, __m128 b, __m128 c){
 | |
|     a= _mm_add_ps(_mm_mul_ps(b,c),a);
 | |
|   }
 | |
| 
 | |
|   inline void mac(__m128d &a, __m128d b, __m128d c){
 | |
|     a= _mm_add_pd(_mm_mul_pd(b,c),a);
 | |
|   }
 | |
| 
 | |
|   // Real float
 | |
|   inline __m128 operator()(__m128 a, __m128 b){
 | |
|     return _mm_mul_ps(a,b);
 | |
|   }
 | |
|   // Real double
 | |
|   inline __m128d operator()(__m128d a, __m128d b){
 | |
|     return _mm_mul_pd(a,b);
 | |
|   }
 | |
|   // Integer
 | |
|   inline __m128i operator()(__m128i a, __m128i b){
 | |
|     return _mm_mullo_epi32(a,b);
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct Div{
 | |
|   // Real float
 | |
|   inline __m128 operator()(__m128 a, __m128 b){
 | |
|     return _mm_div_ps(a,b);
 | |
|   }
 | |
|   // Real double
 | |
|   inline __m128d operator()(__m128d a, __m128d b){
 | |
|     return _mm_div_pd(a,b);
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| struct Conj{
 | |
|   // Complex single
 | |
|   inline __m128 operator()(__m128 in){
 | |
|     return _mm_xor_ps(_mm_addsub_ps(_mm_setzero_ps(),in), _mm_set1_ps(-0.f));
 | |
|   }
 | |
|   // Complex double
 | |
|   inline __m128d operator()(__m128d in){
 | |
|     return _mm_xor_pd(_mm_addsub_pd(_mm_setzero_pd(),in), _mm_set1_pd(-0.f));//untested
 | |
|   }
 | |
|   // do not define for integer input
 | |
| };
 | |
| 
 | |
| struct TimesMinusI{
 | |
|   //Complex single
 | |
|   inline __m128 operator()(__m128 in, __m128 ret){
 | |
|     __m128 tmp =_mm_addsub_ps(_mm_setzero_ps(),in); // r,-i
 | |
|     return _mm_shuffle_ps(tmp,tmp,_MM_SELECT_FOUR_FOUR(2,3,0,1));
 | |
|   }
 | |
|   //Complex double
 | |
|   inline __m128d operator()(__m128d in, __m128d ret){
 | |
|     __m128d tmp =_mm_addsub_pd(_mm_setzero_pd(),in); // r,-i
 | |
|     return _mm_shuffle_pd(tmp,tmp,0x1);
 | |
|   }
 | |
| 
 | |
| 
 | |
| };
 | |
| 
 | |
| struct TimesI{
 | |
|   //Complex single
 | |
|   inline __m128 operator()(__m128 in, __m128 ret){
 | |
|     __m128 tmp =_mm_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(2,3,0,1));
 | |
|     return _mm_addsub_ps(_mm_setzero_ps(),tmp); // r,-i
 | |
|   }
 | |
|   //Complex double
 | |
|   inline __m128d operator()(__m128d in, __m128d ret){
 | |
|     __m128d tmp = _mm_shuffle_pd(in,in,0x1);
 | |
|     return _mm_addsub_pd(_mm_setzero_pd(),tmp); // r,-i
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct Permute{
 | |
| 
 | |
|   static inline __m128 Permute0(__m128 in){
 | |
|     return _mm_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(1,0,3,2)); //AB CD -> CD AB
 | |
|   };
 | |
|   static inline __m128 Permute1(__m128 in){
 | |
|     return _mm_shuffle_ps(in,in,_MM_SELECT_FOUR_FOUR(2,3,0,1)); //AB CD -> BA DC
 | |
|   };
 | |
|   static inline __m128 Permute2(__m128 in){
 | |
|     return in;
 | |
|   };
 | |
|   static inline __m128 Permute3(__m128 in){
 | |
|     return in;
 | |
|   };
 | |
| 
 | |
|   static inline __m128d Permute0(__m128d in){ //AB -> BA
 | |
|     return _mm_shuffle_pd(in,in,0x1);
 | |
|   };
 | |
|   static inline __m128d Permute1(__m128d in){
 | |
|     return in;
 | |
|   };
 | |
|   static inline __m128d Permute2(__m128d in){
 | |
|     return in;
 | |
|   };
 | |
|   static inline __m128d Permute3(__m128d in){
 | |
|     return in;
 | |
|   };
 | |
| };
 | |
|   
 | |
| #define _my_alignr_epi32(a,b,n) _mm_alignr_epi8(a,b,(n*4)%16)
 | |
| #define _my_alignr_epi64(a,b,n) _mm_alignr_epi8(a,b,(n*8)%16)
 | |
| 
 | |
| #ifdef SFW_FP16
 | |
| 
 | |
| struct Grid_half {
 | |
|   Grid_half(){}
 | |
|   Grid_half(uint16_t raw) : x(raw) {}
 | |
|   uint16_t x;
 | |
| };
 | |
| union FP32 {
 | |
|   unsigned int u;
 | |
|   float f;
 | |
| };
 | |
| 
 | |
| // PAB - Lifted and adapted from Eigen, which is GPL V2
 | |
| inline float sfw_half_to_float(Grid_half h) {
 | |
|   const FP32 magic = { 113 << 23 };
 | |
|   const unsigned int shifted_exp = 0x7c00 << 13; // exponent mask after shift
 | |
|   FP32 o;
 | |
|   o.u = (h.x & 0x7fff) << 13;             // exponent/mantissa bits
 | |
|   unsigned int exp = shifted_exp & o.u;   // just the exponent
 | |
|   o.u += (127 - 15) << 23;                // exponent adjust
 | |
|   // handle exponent special cases
 | |
|   if (exp == shifted_exp) {     // Inf/NaN?
 | |
|     o.u += (128 - 16) << 23;    // extra exp adjust
 | |
|   } else if (exp == 0) {        // Zero/Denormal?
 | |
|     o.u += 1 << 23;             // extra exp adjust
 | |
|     o.f -= magic.f;             // renormalize
 | |
|   }
 | |
|   o.u |= (h.x & 0x8000) << 16;    // sign bit
 | |
|   return o.f;
 | |
| }
 | |
| inline Grid_half sfw_float_to_half(float ff) {
 | |
|   FP32 f; f.f = ff;
 | |
|   const FP32 f32infty = { 255 << 23 };
 | |
|   const FP32 f16max = { (127 + 16) << 23 };
 | |
|   const FP32 denorm_magic = { ((127 - 15) + (23 - 10) + 1) << 23 };
 | |
|   unsigned int sign_mask = 0x80000000u;
 | |
|   Grid_half o;
 | |
|     
 | |
|   o.x = static_cast<unsigned short>(0x0u);
 | |
|   unsigned int sign = f.u & sign_mask;
 | |
|   f.u ^= sign;
 | |
|   // NOTE all the integer compares in this function can be safely
 | |
|   // compiled into signed compares since all operands are below
 | |
|   // 0x80000000. Important if you want fast straight SSE2 code
 | |
|   // (since there's no unsigned PCMPGTD).
 | |
|   if (f.u >= f16max.u) {  // result is Inf or NaN (all exponent bits set)
 | |
|     o.x = (f.u > f32infty.u) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf
 | |
|   } else {  // (De)normalized number or zero
 | |
|     if (f.u < (113 << 23)) {  // resulting FP16 is subnormal or zero
 | |
|       // use a magic value to align our 10 mantissa bits at the bottom of
 | |
|       // the float. as long as FP addition is round-to-nearest-even this
 | |
|       // just works.
 | |
|       f.f += denorm_magic.f;
 | |
|       // and one integer subtract of the bias later, we have our final float!
 | |
|       o.x = static_cast<unsigned short>(f.u - denorm_magic.u);
 | |
|     } else {
 | |
|       unsigned int mant_odd = (f.u >> 13) & 1; // resulting mantissa is odd
 | |
| 	
 | |
|       // update exponent, rounding bias part 1
 | |
|       f.u += ((unsigned int)(15 - 127) << 23) + 0xfff;
 | |
|       // rounding bias part 2
 | |
|       f.u += mant_odd;
 | |
|       // take the bits!
 | |
|       o.x = static_cast<unsigned short>(f.u >> 13);
 | |
|     }
 | |
|   } 
 | |
|   o.x |= static_cast<unsigned short>(sign >> 16);
 | |
|   return o;
 | |
| }
 | |
| static inline __m128i Grid_mm_cvtps_ph(__m128 f,int discard) {
 | |
|   __m128i ret=(__m128i)_mm_setzero_ps();
 | |
|   float *fp = (float *)&f;
 | |
|   Grid_half *hp = (Grid_half *)&ret;
 | |
|   hp[0] = sfw_float_to_half(fp[0]);
 | |
|   hp[1] = sfw_float_to_half(fp[1]);
 | |
|   hp[2] = sfw_float_to_half(fp[2]);
 | |
|   hp[3] = sfw_float_to_half(fp[3]);
 | |
|   return ret;
 | |
| }
 | |
| static inline __m128 Grid_mm_cvtph_ps(__m128i h,int discard) {
 | |
|   __m128 ret=_mm_setzero_ps();
 | |
|   float *fp = (float *)&ret;
 | |
|   Grid_half  *hp = (Grid_half *)&h;
 | |
|   fp[0] = sfw_half_to_float(hp[0]);
 | |
|   fp[1] = sfw_half_to_float(hp[1]);
 | |
|   fp[2] = sfw_half_to_float(hp[2]);
 | |
|   fp[3] = sfw_half_to_float(hp[3]);
 | |
|   return ret;
 | |
| }
 | |
| #else 
 | |
| #define Grid_mm_cvtps_ph _mm_cvtps_ph
 | |
| #define Grid_mm_cvtph_ps _mm_cvtph_ps
 | |
| #endif
 | |
| struct PrecisionChange {
 | |
|   static inline __m128i StoH (__m128 a,__m128 b) {
 | |
|     __m128i ha = Grid_mm_cvtps_ph(a,0);
 | |
|     __m128i hb = Grid_mm_cvtps_ph(b,0);
 | |
|     __m128i h =(__m128i) _mm_shuffle_ps((__m128)ha,(__m128)hb,_MM_SELECT_FOUR_FOUR(1,0,1,0));
 | |
|     return h;
 | |
|   }
 | |
|   static inline void  HtoS (__m128i h,__m128 &sa,__m128 &sb) {
 | |
|     sa = Grid_mm_cvtph_ps(h,0); 
 | |
|     h =  (__m128i)_my_alignr_epi32((__m128i)h,(__m128i)h,2);
 | |
|     sb = Grid_mm_cvtph_ps(h,0);
 | |
|   }
 | |
|   static inline __m128 DtoS (__m128d a,__m128d b) {
 | |
|     __m128 sa = _mm_cvtpd_ps(a);
 | |
|     __m128 sb = _mm_cvtpd_ps(b);
 | |
|     __m128 s = _mm_shuffle_ps(sa,sb,_MM_SELECT_FOUR_FOUR(1,0,1,0));
 | |
|     return s;
 | |
|   }
 | |
|   static inline void StoD (__m128 s,__m128d &a,__m128d &b) {
 | |
|     a = _mm_cvtps_pd(s);
 | |
|     s = (__m128)_my_alignr_epi32((__m128i)s,(__m128i)s,2);
 | |
|     b = _mm_cvtps_pd(s);
 | |
|   }
 | |
|   static inline __m128i DtoH (__m128d a,__m128d b,__m128d c,__m128d d) {
 | |
|     __m128 sa,sb;
 | |
|     sa = DtoS(a,b);
 | |
|     sb = DtoS(c,d);
 | |
|     return StoH(sa,sb);
 | |
|   }
 | |
|   static inline void HtoD (__m128i h,__m128d &a,__m128d &b,__m128d &c,__m128d &d) {
 | |
|     __m128 sa,sb;
 | |
|     HtoS(h,sa,sb);
 | |
|     StoD(sa,a,b);
 | |
|     StoD(sb,c,d);
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct Exchange{
 | |
|   // 3210 ordering
 | |
|   static inline void Exchange0(__m128 &out1,__m128 &out2,__m128 in1,__m128 in2){
 | |
|     out1= _mm_shuffle_ps(in1,in2,_MM_SELECT_FOUR_FOUR(1,0,1,0));
 | |
|     out2= _mm_shuffle_ps(in1,in2,_MM_SELECT_FOUR_FOUR(3,2,3,2));
 | |
|   };
 | |
|   static inline void Exchange1(__m128 &out1,__m128 &out2,__m128 in1,__m128 in2){
 | |
|     out1= _mm_shuffle_ps(in1,in2,_MM_SELECT_FOUR_FOUR(2,0,2,0)); /*ACEG*/
 | |
|     out2= _mm_shuffle_ps(in1,in2,_MM_SELECT_FOUR_FOUR(3,1,3,1)); /*BDFH*/
 | |
|     out1= _mm_shuffle_ps(out1,out1,_MM_SELECT_FOUR_FOUR(3,1,2,0)); /*AECG*/
 | |
|     out2= _mm_shuffle_ps(out2,out2,_MM_SELECT_FOUR_FOUR(3,1,2,0)); /*AECG*/
 | |
|   };
 | |
|   static inline void Exchange2(__m128 &out1,__m128 &out2,__m128 in1,__m128 in2){
 | |
|     assert(0);
 | |
|     return;
 | |
|   };
 | |
|   static inline void Exchange3(__m128 &out1,__m128 &out2,__m128 in1,__m128 in2){
 | |
|     assert(0);
 | |
|     return;
 | |
|   };
 | |
| 
 | |
|   static inline void Exchange0(__m128d &out1,__m128d &out2,__m128d in1,__m128d in2){
 | |
|     out1= _mm_shuffle_pd(in1,in2,0x0);
 | |
|     out2= _mm_shuffle_pd(in1,in2,0x3);
 | |
|   };
 | |
|   static inline void Exchange1(__m128d &out1,__m128d &out2,__m128d in1,__m128d in2){
 | |
|     assert(0);
 | |
|     return;
 | |
|   };
 | |
|   static inline void Exchange2(__m128d &out1,__m128d &out2,__m128d in1,__m128d in2){
 | |
|     assert(0);
 | |
|     return;
 | |
|   };
 | |
|   static inline void Exchange3(__m128d &out1,__m128d &out2,__m128d in1,__m128d in2){
 | |
|     assert(0);
 | |
|     return;
 | |
|   };
 | |
| };
 | |
| 
 | |
| struct Rotate{
 | |
| 
 | |
|   static inline __m128 rotate(__m128 in,int n){ 
 | |
|     switch(n){
 | |
|     case 0: return tRotate<0>(in);break;
 | |
|     case 1: return tRotate<1>(in);break;
 | |
|     case 2: return tRotate<2>(in);break;
 | |
|     case 3: return tRotate<3>(in);break;
 | |
|     default: assert(0);
 | |
|     }
 | |
|   }
 | |
|   static inline __m128d rotate(__m128d in,int n){ 
 | |
|     switch(n){
 | |
|     case 0: return tRotate<0>(in);break;
 | |
|     case 1: return tRotate<1>(in);break;
 | |
|     default: assert(0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   template<int n> static inline __m128  tRotate(__m128  in){ return (__m128)_my_alignr_epi32((__m128i)in,(__m128i)in,n); };
 | |
|   template<int n> static inline __m128d tRotate(__m128d in){ return (__m128d)_my_alignr_epi64((__m128i)in,(__m128i)in,n); };
 | |
| 
 | |
| };
 | |
| //////////////////////////////////////////////
 | |
| // Some Template specialization
 | |
| 
 | |
| 
 | |
| //Complex float Reduce
 | |
| template<>
 | |
| inline Grid::ComplexF Reduce<Grid::ComplexF, __m128>::operator()(__m128 in){
 | |
|   __m128 v1; // two complex
 | |
|   v1= Optimization::Permute::Permute0(in); 
 | |
|   v1= _mm_add_ps(v1,in);
 | |
|   u128f conv;    conv.v=v1;
 | |
|   return Grid::ComplexF(conv.f[0],conv.f[1]);
 | |
| }
 | |
| //Real float Reduce
 | |
| template<>
 | |
| inline Grid::RealF Reduce<Grid::RealF, __m128>::operator()(__m128 in){
 | |
|   __m128 v1,v2; // quad single
 | |
|   v1= Optimization::Permute::Permute0(in); 
 | |
|   v1= _mm_add_ps(v1,in);
 | |
|   v2= Optimization::Permute::Permute1(v1); 
 | |
|   v1 = _mm_add_ps(v1,v2);
 | |
|   u128f conv; conv.v=v1;
 | |
|   return conv.f[0];
 | |
| }
 | |
|   
 | |
| //Complex double Reduce
 | |
| template<>
 | |
| inline Grid::ComplexD Reduce<Grid::ComplexD, __m128d>::operator()(__m128d in){
 | |
|   u128d conv; conv.v = in;
 | |
|   return Grid::ComplexD(conv.f[0],conv.f[1]);
 | |
| }
 | |
|   
 | |
| //Real double Reduce
 | |
| template<>
 | |
| inline Grid::RealD Reduce<Grid::RealD, __m128d>::operator()(__m128d in){
 | |
|   __m128d v1;
 | |
|   v1 = Optimization::Permute::Permute0(in); 
 | |
|   v1 = _mm_add_pd(v1,in);
 | |
|   u128d conv; conv.v = v1;
 | |
|   return conv.f[0];
 | |
| }
 | |
| 
 | |
| //Integer Reduce
 | |
| template<>
 | |
| inline Integer Reduce<Integer, __m128i>::operator()(__m128i in){
 | |
|   __m128i v1 = _mm_hadd_epi32(in, in);
 | |
|   __m128i v2 = _mm_hadd_epi32(v1, v1);
 | |
|   return _mm_cvtsi128_si32(v2);
 | |
| }
 | |
| NAMESPACE_END(Optimization);
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////////////////////
 | |
| // Here assign types 
 | |
| typedef __m128i SIMD_Htype;  // Single precision type
 | |
| typedef __m128  SIMD_Ftype;  // Single precision type
 | |
| typedef __m128d SIMD_Dtype; // Double precision type
 | |
| typedef __m128i SIMD_Itype; // Integer type
 | |
| 
 | |
| // prefetch utilities
 | |
| inline void v_prefetch0(int size, const char *ptr){};
 | |
| inline void prefetch_HINT_T0(const char *ptr){
 | |
|   _mm_prefetch(ptr,_MM_HINT_T0);
 | |
| }
 | |
| 
 | |
| // Function name aliases
 | |
| typedef Optimization::Vsplat   VsplatSIMD;
 | |
| typedef Optimization::Vstore   VstoreSIMD;
 | |
| typedef Optimization::Vset     VsetSIMD;
 | |
| typedef Optimization::Vstream  VstreamSIMD;
 | |
| template <typename S, typename T> using ReduceSIMD = Optimization::Reduce<S,T>;
 | |
| 
 | |
| // Arithmetic operations
 | |
| typedef Optimization::Sum         SumSIMD;
 | |
| typedef Optimization::Sub         SubSIMD;
 | |
| typedef Optimization::Div         DivSIMD;
 | |
| typedef Optimization::Mult        MultSIMD;
 | |
| typedef Optimization::MultComplex MultComplexSIMD;
 | |
| typedef Optimization::MultRealPart MultRealPartSIMD;
 | |
| typedef Optimization::MaddRealPart MaddRealPartSIMD;
 | |
| typedef Optimization::Conj        ConjSIMD;
 | |
| typedef Optimization::TimesMinusI TimesMinusISIMD;
 | |
| typedef Optimization::TimesI      TimesISIMD;
 | |
| 
 | |
| NAMESPACE_END(Grid);
 |